Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1973 Aug 1;58(2):401–409. doi: 10.1083/jcb.58.2.401

PERIODIC CHANGES IN RATE OF AMINO ACID UPTAKE DURING YEAST CELL CYCLE

B L A Carter 1, H O Halvorson 1
PMCID: PMC2109040  PMID: 4580902

Abstract

Uptake of amino acids is a complex process but in cells growing with ammonia as sole nitrogen source the initial uptake rate of amino acids is a measure of the transport capacity of the uptake system (permease). In synchronous cultures of Saccharomyces cerevisiae amino acids were transported at all stages of the cell cycle. However, for any one amino acid the initial uptake rate was constant for most of the cycle and doubled during a discrete part of the cycle. Thus, for a variety of amino acids the functioning amino acid transport capacity of the membrane doubles once per cycle at a characteristic stage of the cycle. Arginine, valine, and phenylalanine exhibit periodic doubling of uptake rate at different stages of the cell cycle indicating that the transport of these amino acids is mediated by three different systems. Serine, phenylalanine, and leucine exhibit periodic doubling of the uptake rate at the same stage of the cycle. However, it is unlikely that serine and phenylalanine share the same transport system since the uptake of one is not inhibited by the other amino acid. This phenomenon is analogous to the periodic synthesis of soluble enzymes observed in S. cerevisiae.

Full Text

The Full Text of this article is available as a PDF (547.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benko P. V., Wood T. C., Segel I. H. Multiplicity and regulation of amino acid transport in Penicillium chrysogenum. Arch Biochem Biophys. 1969 Feb;129(2):498–508. doi: 10.1016/0003-9861(69)90207-0. [DOI] [PubMed] [Google Scholar]
  2. Carter B. L., Sebastian J., Halvorson H. O. The regulation of the synthesis of arginine catabolizing enzymes during the cell cycle in Saccharomyces cerevisiae. Adv Enzyme Regul. 1970;9:253–263. doi: 10.1016/s0065-2571(71)80048-1. [DOI] [PubMed] [Google Scholar]
  3. Crabeel M., Grenson M. Regulation of histidine uptake by specific feedback inhibition of two histidine permeases in Saccharomyces cerevisiae. Eur J Biochem. 1970 May 1;14(1):197–204. doi: 10.1111/j.1432-1033.1970.tb00278.x. [DOI] [PubMed] [Google Scholar]
  4. Gits J. J., Grenson M. Multiplicity of the amino acid permeases in Saccharomyces cerevisiae. 3. Evidence for a specific methionine-transporting system. Biochim Biophys Acta. 1967 Jul 3;135(3):507–516. doi: 10.1016/0005-2736(67)90040-5. [DOI] [PubMed] [Google Scholar]
  5. Gorman J., Taruo P., LaBerge M., Halvorson H. Timing of enzyme synthesis during synchronous division in yeast. Biochem Biophys Res Commun. 1964 Feb 18;15(1):43–49. doi: 10.1016/0006-291x(64)90100-7. [DOI] [PubMed] [Google Scholar]
  6. Grenson M., Crabeel M., Wiame J. M., Béchet J. Inhibition of protein synthesis and simulation of permease turnover in yeast. Biochem Biophys Res Commun. 1968 Feb 26;30(4):414–419. doi: 10.1016/0006-291x(68)90760-2. [DOI] [PubMed] [Google Scholar]
  7. Grenson M., Hou C., Crabeel M. Multiplicity of the amino acid permeases in Saccharomyces cerevisiae. IV. Evidence for a general amino acid permease. J Bacteriol. 1970 Sep;103(3):770–777. doi: 10.1128/jb.103.3.770-777.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Grenson M., Mousset M., Wiame J. M., Bechet J. Multiplicity of the amino acid permeases in Saccharomyces cerevisiae. I. Evidence for a specific arginine-transporting system. Biochim Biophys Acta. 1966 Oct 31;127(2):325–338. doi: 10.1016/0304-4165(66)90387-4. [DOI] [PubMed] [Google Scholar]
  9. Grenson M. Multiplicity of the amino acid permeases in Saccharomyces cerevisiae. II. Evidence for a specific lysine-transporting system. Biochim Biophys Acta. 1966 Oct 31;127(2):339–346. doi: 10.1016/0304-4165(66)90388-6. [DOI] [PubMed] [Google Scholar]
  10. Halvorson H. O., Carter B. L., Tauro P. Synthesis of enzymes during the cell cycle. Adv Microb Physiol. 1971;6(0):47–106. [PubMed] [Google Scholar]
  11. Jacobson E. S., Metzenberg R. L. A new gene which affects uptake of neutral and acidic amino acids in Neurospora crassa. Biochim Biophys Acta. 1968 Feb 1;156(1):140–147. doi: 10.1016/0304-4165(68)90113-x. [DOI] [PubMed] [Google Scholar]
  12. Joiris C. R., Grenson M. Spécificité et régulation d'une perméase des acis aminés dicarboxyliques chez "Saccharomyces crevisiae". Arch Int Physiol Biochim. 1969 Feb;77(1):154–156. [PubMed] [Google Scholar]
  13. MITCHISON J. M. The growth of single cells. II. Saccharomyces cerevisiae. Exp Cell Res. 1958 Aug;15(1):214–221. doi: 10.1016/0014-4827(58)90077-6. [DOI] [PubMed] [Google Scholar]
  14. SCOPES A. W., WILLIAMSON D. H. THE GROWTH AND OXYGEN UPTAKE OF SYNCHRONOUSLY DIVIDING CULTURES OF SACCHAROMYCES CEREVISIAE. Exp Cell Res. 1964 Jul;35:361–371. doi: 10.1016/0014-4827(64)90102-8. [DOI] [PubMed] [Google Scholar]
  15. Sebastian J., Carter B. L., Halvorson H. O. Use of yeast populations fractionated by zonal centrifugation to study the cell cycle. J Bacteriol. 1971 Dec;108(3):1045–1050. doi: 10.1128/jb.108.3.1045-1050.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Stebbing N. Growth and changes in pool and macromolecular components of Schizosaccharomyces pombe during the cell cycle. J Cell Sci. 1971 Nov;9(3):701–717. doi: 10.1242/jcs.9.3.701. [DOI] [PubMed] [Google Scholar]
  17. Surdin Y., Sly W., Sire J., Bordes A. M., Robichon-Szulmajster H. Propriétés et contrôle génétique du système d'accumulation des acides aminés chez Saccharomyces cerevisiae. Biochim Biophys Acta. 1965 Oct 18;107(3):546–566. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES