Abstract
Epithelia vary with respect to transepithelial permeability. In those that are considered "leaky", a large fraction of the passive transepithelial flux appears to follow the paracellular route, passing across the zonulae occludentes and moving down the intercellular clefts. In "tight" epithelia, the resistance of the paracellular pathway to passive flux is greatly increased. To see whether differences in the morphology of the zonula occludens could contribute to this variability in leakiness among epithelia, replicas of zonulae occludentes in freeze-fractured material from a variety of tight and leaky epithelia were examined. The junctions appear as a branching and anastomosing network of strands or grooves on the A and B membrane fracture faces, respectively. It was found that the zonula occludens from a "very leaky" epithelium, the proximal convoluted tubule of the mouse kidney, is extremely shallow in the apical-basal direction, consisting in most places of only one junctional strand. In contrast, the "very tight" frog urinary bladder exhibits a zonula occludens that is relatively deep (>0.5 µm) in the apical-basal direction, and consists of five or more interconnected junctional strands interposed between luminal and lateral membrane surfaces. Epithelia of intermediate permeabilities exhibited junctions with intermediate or variable morphology. Toad urinary bladder, mouse stomach, jejunum, and distal tubule, rabbit gallbladder, and Necturus kidney and gallbladder were also examined, and the morphological data from these epithelia were compared to physiological data from the literature.
Full Text
The Full Text of this article is available as a PDF (1.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barry R. J., Smyth D. H., Wright E. M. Short-circuit current and solute transfer by rat jejunum. J Physiol. 1965 Nov;181(2):410–431. doi: 10.1113/jphysiol.1965.sp007770. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bennett M. V., Spira M. E., Pappas G. D. Properties of electrotonic junctions between embryonic cells of Fundulus. Dev Biol. 1972 Dec;29(4):419–435. doi: 10.1016/0012-1606(72)90082-6. [DOI] [PubMed] [Google Scholar]
- Boulpaep E. L., Seely J. F. Electrophysiology of proximal and distal tubules in the autoperfused dog kidney. Am J Physiol. 1971 Oct;221(4):1084–1096. doi: 10.1152/ajplegacy.1971.221.4.1084. [DOI] [PubMed] [Google Scholar]
- Branton D. Fracture faces of frozen membranes. Proc Natl Acad Sci U S A. 1966 May;55(5):1048–1056. doi: 10.1073/pnas.55.5.1048. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Civan M. M., Frazier H. S. The site of the stimulatory action of vasopressin on sodium transport in toad bladder. J Gen Physiol. 1968 May;51(5):589–605. doi: 10.1085/jgp.51.5.589. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DiBona D. R. Passive intercellular pathway in amphibian epithelia. Nat New Biol. 1972 Aug 9;238(84):179–181. doi: 10.1038/newbio238179a0. [DOI] [PubMed] [Google Scholar]
- Eggena P. Temperature dependence of vasopressin action on the toad bladder. J Gen Physiol. 1972 May;59(5):519–533. doi: 10.1085/jgp.59.5.519. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FARQUHAR M. G., PALADE G. E. Junctional complexes in various epithelia. J Cell Biol. 1963 May;17:375–412. doi: 10.1083/jcb.17.2.375. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Friend D. S., Gilula N. B. Variations in tight and gap junctions in mammalian tissues. J Cell Biol. 1972 Jun;53(3):758–776. doi: 10.1083/jcb.53.3.758. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frizzell R. A., Schultz S. G. Ionic conductances of extracellular shunt pathway in rabbit ileum. Influence of shunt on transmural sodium transport and electrical potential differences. J Gen Physiol. 1972 Mar;59(3):318–346. doi: 10.1085/jgp.59.3.318. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frömter E., Diamond J. Route of passive ion permeation in epithelia. Nat New Biol. 1972 Jan 5;235(53):9–13. doi: 10.1038/newbio235009a0. [DOI] [PubMed] [Google Scholar]
- Frömter E. The route of passive ion movement through the epithelium of Necturus gallbladder. J Membr Biol. 1972;8(3):259–301. doi: 10.1007/BF01868106. [DOI] [PubMed] [Google Scholar]
- Goodenough D. A., Revel J. P. A fine structural analysis of intercellular junctions in the mouse liver. J Cell Biol. 1970 May;45(2):272–290. doi: 10.1083/jcb.45.2.272. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MILLER F. Hemoglobin absorption by the cells of the proximal convoluted tubule in mouse kidney. J Biophys Biochem Cytol. 1960 Dec;8:689–718. doi: 10.1083/jcb.8.3.689. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Machen T. E., Diamond J. M. The mechanism of anion permeation in thorium-treated gallbladder. J Membr Biol. 1972;8(1):63–96. doi: 10.1007/BF01868095. [DOI] [PubMed] [Google Scholar]
- Machen T. E., Erlij D., Wooding F. B. Permeable junctional complexes. The movement of lanthanum across rabbit gallbladder and intestine. J Cell Biol. 1972 Aug;54(2):302–312. doi: 10.1083/jcb.54.2.302. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pinto da Silva P., Branton D. Membrane splitting in freeze-ethching. Covalently bound ferritin as a membrane marker. J Cell Biol. 1970 Jun;45(3):598–605. doi: 10.1083/jcb.45.3.598. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Staehelin L. A., Mukherjee T. M., Williams A. W. Freeze-etch appearance of the tight junctions in the epithelium of small and large intestine of mice. Protoplasma. 1969;67(2):165–184. doi: 10.1007/BF01248737. [DOI] [PubMed] [Google Scholar]
- Wade J. B., Revel J. P., DiScala V. A. Effect of osmotic gradients on intercellular junctions of the toad bladder. Am J Physiol. 1973 Feb;224(2):407–415. doi: 10.1152/ajplegacy.1973.224.2.407. [DOI] [PubMed] [Google Scholar]
- Whittembury G., Rawlins F. A. Evidence of a paracellular pathway for ion flow in the kidney proximal tubule. Electromicroscopic demonstration of lanthanum precipitate in the tight junction. Pflugers Arch. 1971;330(4):302–309. doi: 10.1007/BF00588582. [DOI] [PubMed] [Google Scholar]