Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1973 Aug 1;58(2):357–378. doi: 10.1083/jcb.58.2.357

ROLE OF THE MITOCHONDRIAL GENOME DURING EARLY DEVELOPMENT IN MICE

Effects of Ethidium Bromide and Chloramphenicol

Lajos Pikó 1, David G Chase 1
PMCID: PMC2109054  PMID: 4738106

Abstract

The role of the mitochondrial genome in early development and differentiation was studied in mouse embryos cultured in vitro from the two to four cell stage to the blastocyst (about 100 cells). During this period the mitochondria undergo morphological differentiation: progressive enlargement followed by an increase in matrix density, in number of cristae, and in number of mitochondrial ribosomes. Mitochondrial ribosomal and transfer RNA synthesis occurs from the 8 to 16 cell stage on and contributes to the establishment of a mitochondrial protein-synthesizing system. Inhibition of mitochondrial RNA- and protein-synthesis by 0.1 µg/ml of ethidium bromide or 31.2 µg/ml of chloramphenicol permits essentially normal embryo development and cellular differentiation. Mitochondrial morphogenesis is also nearly normal except for the appearance of dilated and vesicular cristae in blastocyst mitochondria. Such blastocysts are capable of normal postimplantation development when transplanted into the uteri of foster mothers. Higher concentrations of these inhibitors have general toxic effects and arrest embryo development. It is concluded that mitochondrial differentiation in the early mouse embryo occurs through the progressive transformation of the preexisting mitochondria and is largely controlled by the nucleocytoplasmic system. Mitochondrial protein synthesis is required for the normal structural organization of the cristae in blastocyst mitochondria. Embryo development and cellular differentiation up to the blastocyst stage are not dependent on mitochondrial genetic activity.

Full Text

The Full Text of this article is available as a PDF (2.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adoutte A., Balmefrézol M., Beisson J., André J. The effects of erythromycin and chloramphenicol on the ultrastructure of mitochondria in sensitive and resistant strains of Paramecium. J Cell Biol. 1972 Jul;54(1):8–19. doi: 10.1083/jcb.54.1.8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Attardi B., Attardi G. Expression of the mitochondrial genome in HeLa cells. I. Properties of the discrete RNA components from the mitochondrial fraction. J Mol Biol. 1971 Jan 28;55(2):231–249. doi: 10.1016/0022-2836(71)90194-x. [DOI] [PubMed] [Google Scholar]
  3. Biggers J. D., Whittingham D. G., Donahue R. P. The pattern of energy metabolism in the mouse oöcyte and zygote. Proc Natl Acad Sci U S A. 1967 Aug;58(2):560–567. doi: 10.1073/pnas.58.2.560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Borst P., Kroon A. M. Mitochondrial DNA: physicochemical properties, replication, and genetic function. Int Rev Cytol. 1969;26:107–190. doi: 10.1016/s0074-7696(08)61635-6. [DOI] [PubMed] [Google Scholar]
  5. Borst P. Mitochondrial nucleic acids. Annu Rev Biochem. 1972;41:333–376. doi: 10.1146/annurev.bi.41.070172.002001. [DOI] [PubMed] [Google Scholar]
  6. Brachet J. Effects of acridines on morphogenesis. Nature. 1968 Nov 2;220(5166):488–489. doi: 10.1038/220488a0. [DOI] [PubMed] [Google Scholar]
  7. Brega A., Baglioni C. A study of mitochondrial protein synthesis in intact HeLa cells. Eur J Biochem. 1971 Oct 14;22(3):415–422. doi: 10.1111/j.1432-1033.1971.tb01559.x. [DOI] [PubMed] [Google Scholar]
  8. Brega A., Vesco C. Ribonucleoprotein particles involved in HeLa mitochondrial protein synthesis. Nat New Biol. 1971 Feb 3;229(5):136–139. doi: 10.1038/newbio229136a0. [DOI] [PubMed] [Google Scholar]
  9. Brinster R. L. Protein content of the mouse embryo during the first five days of development. J Reprod Fertil. 1967 Jun;13(3):413–420. doi: 10.1530/jrf.0.0130413. [DOI] [PubMed] [Google Scholar]
  10. Brinster R. L. Studies on the development of mouse embryos in vitro. IV. Interaction of energy sources. J Reprod Fertil. 1965 Oct;10(2):227–240. doi: 10.1530/jrf.0.0100227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Brinster R. L., Thomson J. L. Development of eight-cell mouse embryos in vitro. Exp Cell Res. 1966 May;42(2):308–315. doi: 10.1016/0014-4827(66)90295-3. [DOI] [PubMed] [Google Scholar]
  12. Calarco P. G., Brown E. H. An ultrastructural and cytological study of preimplantation development of the mouse. J Exp Zool. 1969 Jul;171(3):253–283. doi: 10.1002/jez.1401710303. [DOI] [PubMed] [Google Scholar]
  13. Chamberlain J. P., Metz C. B. Mitochondrial RNA synthesis in sea urchin embryos. J Mol Biol. 1972 Mar 14;64(3):593–607. doi: 10.1016/0022-2836(72)90085-x. [DOI] [PubMed] [Google Scholar]
  14. Chamberlain J. P. RNA synthesis in anucleate egg fragments and normal embryos of the sea urchin, Arbacia punctulata. Biochim Biophys Acta. 1970 Jul 16;213(1):183–193. doi: 10.1016/0005-2787(70)90019-5. [DOI] [PubMed] [Google Scholar]
  15. Chase J. W., Dawid I. B. Biogenesis of mitochondria during Xenopus laevis development. Dev Biol. 1972 Apr;27(4):504–518. doi: 10.1016/0012-1606(72)90189-3. [DOI] [PubMed] [Google Scholar]
  16. Craig S. P., Piatigorsky J. Protein synthesis and development in the absence of cytoplasmic RNA synthesis in nonnucleate egg fragments and embryos of sea urchins: effect of ethidium bromide. Dev Biol. 1971 Feb;24(2):214–232. doi: 10.1016/0012-1606(71)90096-0. [DOI] [PubMed] [Google Scholar]
  17. Craig S. P. Synthesis of RNA in non-nucleate fragments of sea urchin eggs. J Mol Biol. 1970 Feb 14;47(3):615–618. doi: 10.1016/0022-2836(70)90331-1. [DOI] [PubMed] [Google Scholar]
  18. Dawid I. B., Brown D. D. The mitochondrial and ribosomal DNA components of oocytes of Urechis caupo. Dev Biol. 1970 May;22(1):1–14. doi: 10.1016/0012-1606(70)90002-3. [DOI] [PubMed] [Google Scholar]
  19. Dawid I. B., Chase J. W. Mitochondrial RNA in Xenopus laevis. II. Molecular weights and other physical properties of mitochondrial ribosomal and 4 s RNA. J Mol Biol. 1972 Jan 28;63(2):217–231. doi: 10.1016/0022-2836(72)90371-3. [DOI] [PubMed] [Google Scholar]
  20. Dawid I. B. Evidence for the mitochondrial origin of frog egg cytoplasmic DNA. Proc Natl Acad Sci U S A. 1966 Jul;56(1):269–276. doi: 10.1073/pnas.56.1.269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Dawid I. B. Mitochondrial RNA In Xenopus laevis. I. The expression of the mitochondrial genome. J Mol Biol. 1972 Jan 28;63(2):201–216. doi: 10.1016/0022-2836(72)90370-1. [DOI] [PubMed] [Google Scholar]
  22. Dawid I. B. The nature of mitochondrial RNA in oocytes of Xenopus laevis and its relation to mitochondrial DNA. Symp Soc Exp Biol. 1970;24:227–246. [PubMed] [Google Scholar]
  23. Ellem K. A., Gwatkin R. B. Patterns of nucleic acid synthesis in the early mouse embryo. Dev Biol. 1968 Oct;18(4):311–330. doi: 10.1016/0012-1606(68)90044-4. [DOI] [PubMed] [Google Scholar]
  24. Fettes I. M., Haldar D., Freeman K. B. Effect of chloramphenicol on enzyme synthesis and growth of mammalian cells. Can J Biochem. 1972 Feb;50(2):200–209. doi: 10.1139/o72-027. [DOI] [PubMed] [Google Scholar]
  25. Firkin F. C., Linnane A. W. Differential effects of chloramphenicol on the growth and respiration of mammalian cells. Biochem Biophys Res Commun. 1968 Aug 13;32(3):398–402. doi: 10.1016/0006-291x(68)90674-8. [DOI] [PubMed] [Google Scholar]
  26. Freeman K. B. Effects of chloramphenicol and its isomers and analogues on the mitochondrial respiratory chain. Can J Biochem. 1970 Apr;48(4):469–478. doi: 10.1139/o70-076. [DOI] [PubMed] [Google Scholar]
  27. Freeman K. B. Inhibition of mitochondrial and bacterial protein synthesis by chloramphenicol. Can J Biochem. 1970 Apr;48(4):479–485. doi: 10.1139/o70-077. [DOI] [PubMed] [Google Scholar]
  28. Galper J. B., Darnell J. E. Mitochondrial protein synthesis in HeLa cells. J Mol Biol. 1971 Apr 28;57(2):363–367. doi: 10.1016/0022-2836(71)90354-8. [DOI] [PubMed] [Google Scholar]
  29. Geuskens M. A study of the effects of ethidium bromide on the ultrastructure of sea urchin embryos. J Exp Zool. 1971 Oct;178(2):247–255. doi: 10.1002/jez.1401780209. [DOI] [PubMed] [Google Scholar]
  30. Goldring E. S., Grossman L. I., Krupnick D., Cryer D. R., Marmur J. The petite mutation in yeast. Loss of mitochondrial deoxyribonucleic acid during induction of petites with ethidium bromide. J Mol Biol. 1970 Sep 14;52(2):323–335. doi: 10.1016/0022-2836(70)90033-1. [DOI] [PubMed] [Google Scholar]
  31. Hartmann J. F., Comb D. G. Transcription of nuclear and cytoplasmic genes during early development of sea urchin embryos. J Mol Biol. 1969 Apr 14;41(1):155–158. doi: 10.1016/0022-2836(69)90133-8. [DOI] [PubMed] [Google Scholar]
  32. Hillman N., Tasca R. J. Ultrastructural and autoradiographic studies of mouse cleavage stages. Am J Anat. 1969 Oct;126(2):151–173. doi: 10.1002/aja.1001260203. [DOI] [PubMed] [Google Scholar]
  33. King M. E., Godman G. C., King D. W. Respiratory enzymes and mitochondrial morphology of HeLa and L cells treated with chloramphenicol and ethidium bromide. J Cell Biol. 1972 Apr;53(1):127–142. doi: 10.1083/jcb.53.1.127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Kramen M. A., Biggers J. D. Uptake of tricarboxyli acid cycle intermediates by preimplantation mouse embryos in vitro. Proc Natl Acad Sci U S A. 1971 Nov;68(11):2656–2659. doi: 10.1073/pnas.68.11.2656. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Küntzel H. The genetic apparatus of mitochondria from Neurospora and yeast. Curr Top Microbiol Immunol. 1971;54:94–118. doi: 10.1007/978-3-642-65123-6_4. [DOI] [PubMed] [Google Scholar]
  36. Lin T. P. Microsurgery of inner cell mass of mouse blastocysts. Nature. 1969 May 3;222(5192):480–481. doi: 10.1038/222480b0. [DOI] [PubMed] [Google Scholar]
  37. Loening U. E. The determination of the molecular weight of ribonucleic acid by polyacrylamide-gel electrophresis. The effects of changes in conformation. Biochem J. 1969 Jun;113(1):131–138. doi: 10.1042/bj1130131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. MARTIN R. G., AMES B. N. A method for determining the sedimentation behavior of enzymes: application to protein mixtures. J Biol Chem. 1961 May;236:1372–1379. [PubMed] [Google Scholar]
  39. MINTZ B. SYNTHETIC PROCESSES AND EARLY DEVELOPMENT IN THE MAMMALIAN EGG. J Exp Zool. 1964 Oct;157:85–100. doi: 10.1002/jez.1401570114. [DOI] [PubMed] [Google Scholar]
  40. Mackler B., Grace R., Duncan H. M. Studies of mitochondrial development during embryogenesis in the rat. Arch Biochem Biophys. 1971 Jun;144(2):603–610. doi: 10.1016/0003-9861(71)90367-5. [DOI] [PubMed] [Google Scholar]
  41. Maraldi N. M., Monesi V. Ultrastructural changes from fertilization to blastulation in the mouse. Arch Anat Microsc Morphol Exp. 1970 Oct-Dec;59(4):361–382. [PubMed] [Google Scholar]
  42. Nagley P., Linnane A. W. Biogenesis of mitochondria. XXI. Studies on the nature of the mitochondrial genome in yeast: the degenerative effects of ethidium bromide on mitochondrial genetic information in a respiratory competent strain. J Mol Biol. 1972 Apr 28;66(1):181–193. doi: 10.1016/s0022-2836(72)80015-9. [DOI] [PubMed] [Google Scholar]
  43. Nass M. M., Buck C. A. Studies on mitochondrial tRNA from animal cells. II. Hybridization of aminoacyl-tRNA from rat liver mitochondria with heavy and light complementary strands of mitochondrial DNA. J Mol Biol. 1970 Dec 14;54(2):187–198. doi: 10.1016/0022-2836(70)90426-2. [DOI] [PubMed] [Google Scholar]
  44. Nass M. M. Differential effects of ethidium bromide on mitochondrial and nuclear DNA synthesis in vivo in cultured mammalian cells. Exp Cell Res. 1972 May;72(1):211–222. doi: 10.1016/0014-4827(72)90583-6. [DOI] [PubMed] [Google Scholar]
  45. Ojala D., Attardi G. Expression of the mitochondrial genome in HeLa cells. X. Properties of mitochondrial polysomes. J Mol Biol. 1972 Mar 28;65(2):273–289. doi: 10.1016/0022-2836(72)90282-3. [DOI] [PubMed] [Google Scholar]
  46. Peacock A. C., Dingman C. W. Molecular weight estimation and separation of ribonucleic acid by electrophoresis in agarose-acrylamide composite gels. Biochemistry. 1968 Feb;7(2):668–674. doi: 10.1021/bi00842a023. [DOI] [PubMed] [Google Scholar]
  47. Perlman P. S., Mahler H. R. Molecular consequences of ethidium bromide mutagenesis. Nat New Biol. 1971 May 5;231(18):12–16. [PubMed] [Google Scholar]
  48. Perlman S., Penman S. Mitochondrial protein synthesis: resistance to emetine and response to RNA synthesis inhibitors. Biochem Biophys Res Commun. 1970 Aug 24;40(4):941–948. doi: 10.1016/0006-291x(70)90994-0. [DOI] [PubMed] [Google Scholar]
  49. Perlman S., Penman S. Protein-synthesizing structures associated with mitochondria. Nature. 1970 Jul 11;227(5254):133–137. doi: 10.1038/227133a0. [DOI] [PubMed] [Google Scholar]
  50. Pikó L. Synthesis of macromolecules in early mouse embryos cultured in vitro: RNA, DNA, and a polysaccharide component. Dev Biol. 1970 Feb;21(1):257–259. doi: 10.1016/0012-1606(70)90071-0. [DOI] [PubMed] [Google Scholar]
  51. Robberson D., Aloni Y., Attardi G., Davidson N. Expression of the mitochondrial genome in HeLa cells. VI. Size determination of mitochondrial ribosomal RNA by electron microscopy. J Mol Biol. 1971 Sep 28;60(3):473–484. doi: 10.1016/0022-2836(71)90182-3. [DOI] [PubMed] [Google Scholar]
  52. Schatz G., Groot G. S., Mason T., Rouslin W., Wharton D. C., Salitzgaber J. Biogenesis of mitochondrial inner membranes in bakers' yeast. Fed Proc. 1972 Jan-Feb;31(1):21–29. [PubMed] [Google Scholar]
  53. Selvig S. E., Gross P. R., Hunter A. L. Cytoplasmic synthesis of RNA in the sea urchin embryo. Dev Biol. 1970 Jun;22(2):343–365. doi: 10.1016/0012-1606(70)90158-2. [DOI] [PubMed] [Google Scholar]
  54. Simard R. Specific nuclear and nucleolar ultrastructural lesions induced by proflavin and similarly acting antimetabolites in tissue culture. Cancer Res. 1966 Nov;26(11):2316–2328. [PubMed] [Google Scholar]
  55. Smith-Johannsen H., Gibbs S. P. Effects of chloramphenicol on chloroplast and mitochondrial ultrastructure in Ochromonas danica. J Cell Biol. 1972 Mar;52(3):598–614. doi: 10.1083/jcb.52.3.598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Smith C. A., Jordan J. M., Vinograd J. In vivo effects of intercalating drugs on the superhelix density of mitochondrial DNA isolated from human and mouse cells in culture. J Mol Biol. 1971 Jul 28;59(2):255–272. doi: 10.1016/0022-2836(71)90050-7. [DOI] [PubMed] [Google Scholar]
  57. Soslau G., Nass M. M. Effects of ethidium bromide on the cytochrome content and ultrastructure of L cell mitochondria. J Cell Biol. 1971 Nov;51(21):514–524. doi: 10.1083/jcb.51.2.514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Stern S., Biggers J. D., Anderson E. Mitochondria and early development of the mouse. J Exp Zool. 1971 Feb;176(2):179–191. doi: 10.1002/jez.1401760206. [DOI] [PubMed] [Google Scholar]
  59. Storrie B., Attardi G. Expression of the mitochondrial genome in HeLa cells. 13. Effect of selective inhibition of cytoplasmic or mitochondrial protein synthesis on mitochondrial nucleic acid synthesis. J Mol Biol. 1972 Nov 14;71(2):177–199. doi: 10.1016/0022-2836(72)90345-2. [DOI] [PubMed] [Google Scholar]
  60. Swanson R. F., Dawid I. B. The mitochondrial ribosome of Xenopus laevis. Proc Natl Acad Sci U S A. 1970 May;66(1):117–124. doi: 10.1073/pnas.66.1.117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Tyler A., Piatigorsky J., Ozaki H. Influence of individual amino acids on uptake and incorporation of valine, glutamic acid and arginine by unfertilized and fertilized sea urchin eggs. Biol Bull. 1966 Aug;131(1):204–217. doi: 10.2307/1539660. [DOI] [PubMed] [Google Scholar]
  62. WHITTEN W. K. Culture of tubal ova. Nature. 1957 May 25;179(4569):1081–1082. doi: 10.1038/1791081a0. [DOI] [PubMed] [Google Scholar]
  63. Wales R. G., Biggers J. D. The permeability of two- and eight-cell mouse embryos to L-malic acid. J Reprod Fertil. 1968 Feb;15(1):103–111. doi: 10.1530/jrf.0.0150103. [DOI] [PubMed] [Google Scholar]
  64. Weislogel P. O., Butow R. A. Control of the mitochondrial genome in Saccharomyces cerevisiae. The fate of mitochondrial membrane proteins and mitochondrial deoxyribonucleic acid during petite induction. J Biol Chem. 1971 Aug 25;246(16):5113–5119. [PubMed] [Google Scholar]
  65. Woodland H. R., Graham C. F. RNA synthesis during early development of the mouse. Nature. 1969 Jan 25;221(5178):327–332. doi: 10.1038/221327a0. [DOI] [PubMed] [Google Scholar]
  66. Zylber E., Vesco C., Penman S. Selective inhibition of the synthesis of mitochondria-associated RNA by ethidium bromide. J Mol Biol. 1969 Aug 28;44(1):195–204. doi: 10.1016/0022-2836(69)90414-8. [DOI] [PubMed] [Google Scholar]
  67. de Vries H., Kroon A. M. On the effect of chloramphenicol and oxytetracycline on the biogenesis of mammalian mitochondria. Biochim Biophys Acta. 1970 Apr 15;204(2):531–541. doi: 10.1016/0005-2787(70)90173-5. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES