Abstract
The distribution, ultrastructure, and chemistry of microfilaments in cultured chick embryo fibroblasts were studied by thin sectioning of flat-embedded untreated and glycerol-extracted cells, histochemical and immunological electron microscopic procedures, and the negative staining of cells cultured on electron microscopic grids. In these cultured cells, the microfilaments are arranged into thick bundles that are disposed longitudinally and in looser arrangements in the fusiform-shaped cells. In the latter case, they are concentrated along the margins of the flattened cell, on the dorsal surface, and particularly at the ends of the cell and its ventral surface, where contact is made with the plastic dish or with other cells. Extracellular filaments, presumably originating from within the cell, are found at these points of contact. The microfilaments are composed in part of an actin-like protein. These filaments are between 70 and 90 Å in diameter, they are stable in 50% glycerol, they have an endogenous ATPase (myosin-like?) associated with them, they bind rabbit muscle heavy meromyosin, and they specifically bind antibody directed against isolated actin-like protein. In the cultured chick embryo fibroblasts, the microfilaments are essential for the establishment and maintenance of form, and they are probably critical elements for adhesion and motility. The microfilaments might also serve as stabilizers of intramembranous particle fluidity.
Full Text
The Full Text of this article is available as a PDF (2.0 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- AMBROSE E. J. The movements of fibrocytes. Exp Cell Res. 1961;Suppl 8:54–73. doi: 10.1016/0014-4827(61)90340-8. [DOI] [PubMed] [Google Scholar]
- Abercrombie M., Heaysman J. E., Pegrum S. M. The locomotion of fibroblasts in culture. IV. Electron microscopy of the leading lamella. Exp Cell Res. 1971 Aug;67(2):359–367. doi: 10.1016/0014-4827(71)90420-4. [DOI] [PubMed] [Google Scholar]
- Biberfeld P., Ericsson J. L., Perlmann P., Raftell M. Increased occurrence of cytoplasmic filaments in in vitro propagated rat liver epithelial cells. Exp Cell Res. 1965 Aug;39(1):301–305. doi: 10.1016/0014-4827(65)90034-0. [DOI] [PubMed] [Google Scholar]
- Brunk U., Ericsson J. L., Pontén J., Westermark B. Specialization of cell surfaces in contact-inhibited human glia-like cells in vitro. Exp Cell Res. 1971 Aug;67(2):407–415. doi: 10.1016/0014-4827(71)90426-5. [DOI] [PubMed] [Google Scholar]
- Cloney R. A. Cytoplasmic filaments and cell movements: epidermal cells during ascidian metamorphosis. J Ultrastruct Res. 1966 Feb;14(3):300–328. doi: 10.1016/s0022-5320(66)80051-5. [DOI] [PubMed] [Google Scholar]
- Courington D., Vogt P. K. Electron microscopy of chick fibroblasts infected by defective rous sarcoma virus and its helper. J Virol. 1967 Apr;1(2):400–414. doi: 10.1128/jvi.1.2.400-414.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DE PETRIS S., KARLSBAD G., PERNIS B. Filamentous structures in the cytoplasm of normal mononuclear phagocytes. J Ultrastruct Res. 1962 Aug;7:39–55. doi: 10.1016/s0022-5320(62)80025-2. [DOI] [PubMed] [Google Scholar]
- Di Stefano H. S., Dougherty R. M. Cytological observations of "nonproducer" Rous sarcoma cells. Virology. 1965 Nov;27(3):360–377. doi: 10.1016/0042-6822(65)90116-9. [DOI] [PubMed] [Google Scholar]
- Fisher H. W., Cooper T. W. Electron microscope studies of the microvilli of HeLa cells. J Cell Biol. 1967 Aug;34(2):569–576. doi: 10.1083/jcb.34.2.569. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Franke W. W. Relationship of nuclear membranes with filaments and microtubules. Protoplasma. 1971;73(2):263–292. doi: 10.1007/BF01275600. [DOI] [PubMed] [Google Scholar]
- Franks L. M., Riddle P. N., Seal P. Actin-like filaments and cell movements in human ascites tumour cells: an ultrastructural and cinemicrographic study. Exp Cell Res. 1969 Feb;54(2):157–162. doi: 10.1016/0014-4827(69)90227-4. [DOI] [PubMed] [Google Scholar]
- GOLDBERG B., GREEN H. AN ANALYSIS OF COLLAGEN SECRETION BY ESTABLISHED MOUSE FIBROBLAST LINES. J Cell Biol. 1964 Jul;22:227–258. doi: 10.1083/jcb.22.1.227. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldman R. D., Follett E. A. The structure of the major cell processes of isolated BHK21 fibroblasts. Exp Cell Res. 1969 Oct;57(2):263–276. doi: 10.1016/0014-4827(69)90150-5. [DOI] [PubMed] [Google Scholar]
- Goldman R. D. The effects of cytochalasin B on the microfilaments of baby hamster kidney (BHK-21) cells. J Cell Biol. 1972 Feb;52(2):246–254. doi: 10.1083/jcb.52.2.246. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gustafson T., Wolpert L. Cellular movement and contact in sea urchin morphogenesis. Biol Rev Camb Philos Soc. 1967 Aug;42(3):442–498. doi: 10.1111/j.1469-185x.1967.tb01482.x. [DOI] [PubMed] [Google Scholar]
- HOFFMANN-BERLING H. Adenosintriphosphat als Betriebsstoff von Zellbewegungen. Biochim Biophys Acta. 1954 Jun;14(2):182–194. doi: 10.1016/0006-3002(54)90157-2. [DOI] [PubMed] [Google Scholar]
- Hatano S., Ohnuma J. Purification and characterization of myosin A from the myxomycete plasmodium. Biochim Biophys Acta. 1970 Apr 7;205(1):110–120. doi: 10.1016/0005-2728(70)90067-8. [DOI] [PubMed] [Google Scholar]
- Hatano S., Oosawa F. Extraction of an actin-like protein from the plasmodium of a myxomycete and its interaction with myosin A from rabbit striated muscle. J Cell Physiol. 1966 Oct;68(2):197–202. doi: 10.1002/jcp.1040680214. [DOI] [PubMed] [Google Scholar]
- Hatano S., Tazawa M. Isolation, purification and characterization of byosin B from myxomycete plasmodium. Biochim Biophys Acta. 1968 Apr 9;154(3):507–519. doi: 10.1016/0005-2795(68)90011-1. [DOI] [PubMed] [Google Scholar]
- Hayes R. L., Allen E. R. Electron-microscopic studies on a double-stranded beaded filament of embryonic collagen. J Cell Sci. 1967 Sep;2(3):419–434. doi: 10.1242/jcs.2.3.419. [DOI] [PubMed] [Google Scholar]
- Hsie A. W., Jones C., Puck T. T. Further changes in differentiation state accompanying the conversion of Chinese hamster cells of fibroblastic form by dibutyryl adenosine cyclic 3':5'-monophosphate and hormones. Proc Natl Acad Sci U S A. 1971 Jul;68(7):1648–1652. doi: 10.1073/pnas.68.7.1648. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hämmerling U., Aoki T., de Harven E., Boyse E. A., Old L. J. Use of hybrid antibody with anti-gamma-G and anti-ferritin specificities in locating cell surface antigens by electron microscopy. J Exp Med. 1968 Dec 1;128(6):1461–1473. doi: 10.1084/jem.128.6.1461. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ikemoto N., Kitagawa S., Nakamura A., Gergely J. Electron microscopic investigations of actomyosin as a function of ionic strength. J Cell Biol. 1968 Dec;39(3):620–629. doi: 10.1083/jcb.39.3.620. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ishikawa H., Bischoff R., Holtzer H. Formation of arrowhead complexes with heavy meromyosin in a variety of cell types. J Cell Biol. 1969 Nov;43(2):312–328. [PMC free article] [PubMed] [Google Scholar]
- James D. W., Taylor J. F. The stress developed by sheets of chick fibroblasts in vitro. Exp Cell Res. 1969 Jan;54(1):107–110. doi: 10.1016/0014-4827(69)90299-7. [DOI] [PubMed] [Google Scholar]
- Johnson G. S., Friedman R. M., Pastan I. Restoration of several morphological characteristics of normal fibroblasts in sarcoma cells treated with adenosine-3':5'-cyclic monphosphate and its derivatives. Proc Natl Acad Sci U S A. 1971 Feb;68(2):425–429. doi: 10.1073/pnas.68.2.425. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kelly R. E., Rice R. V. Localization of myosin filaments in smooth muscle. J Cell Biol. 1968 Apr;37(1):105–116. doi: 10.1083/jcb.37.1.105. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Keyserlingk D. G. Kontraktilität und Ultrastruktur glycerin-extrahierter Fibroblasten aus der Gewebekultur. Protoplasma. 1969;67(4):391–406. doi: 10.1007/BF01254903. [DOI] [PubMed] [Google Scholar]
- Kletzien R. F., Perdue J. F., Springer A. Cytochalasin A and B. Inhibition of sugar uptake in cultured cells. J Biol Chem. 1972 May 10;247(9):2964–2966. [PubMed] [Google Scholar]
- Maser M. D., Powell T. E., 3rd, Philpott C. W. Relationships among pH, osmolality, and concentration of fixative solutions. Stain Technol. 1967 Jul;42(4):175–182. doi: 10.3109/10520296709115005. [DOI] [PubMed] [Google Scholar]
- McNutt N. S., Culp L. A., Black P. H. Contact-inhibited revertant cell lines isolated from SV 40-transformed cells. IV. Microfilament distribution and cell shape in untransformed, transformed, and revertant Balb-c 3T3 cells. J Cell Biol. 1973 Feb;56(2):412–428. doi: 10.1083/jcb.56.2.412. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McNutt N. S., Culp L. A., Black P. H. Contact-inhibited revertant cell lines isolated from SV40-transformed cells. II. Ultrastructural study. J Cell Biol. 1971 Sep;50(3):691–708. doi: 10.1083/jcb.50.3.691. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mizel S. B., Wilson L. Inhibition of the transport of several hexoses in mammalian cells by cytochalasin B. J Biol Chem. 1972 Jun 25;247(12):4102–4105. [PubMed] [Google Scholar]
- Morgan J. Microfilaments from amoeba proteins. Exp Cell Res. 1971 Mar;65(1):7–16. doi: 10.1016/s0014-4827(71)80043-5. [DOI] [PubMed] [Google Scholar]
- Nachmias V. T. Electron microscope observations on myosin from Physarum polycephalum. J Cell Biol. 1972 Mar;52(3):648–663. doi: 10.1083/jcb.52.3.648. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nachmias V. T. Further electron microscope studies on fibrillar organization of the ground cytoplasm of Chaos chaos. J Cell Biol. 1968 Jul;38(1):40–50. doi: 10.1083/jcb.38.1.40. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nachmias V. Filament formation by purified Physarum myosin. Proc Natl Acad Sci U S A. 1972 Aug;69(8):2011–2014. doi: 10.1073/pnas.69.8.2011. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Perdue J. F., Kletzien R., Miller K. The isolation and characterization of plasma membrane from cultured cells. I. The chemical composition of membrane isolated from uninfected and oncogenic RNA virus-converted chick embryo fibroblasts. Biochim Biophys Acta. 1971 Dec 3;249(2):419–434. doi: 10.1016/0005-2736(71)90120-9. [DOI] [PubMed] [Google Scholar]
- Perdue J. F., Kletzien R., Miller K. The isolation and characterization of plasma membrane from cultured cells. I. The chemical composition of membrane isolated from uninfected and oncogenic RNA virus-converted chick embryo fibroblasts. Biochim Biophys Acta. 1971 Dec 3;249(2):419–434. doi: 10.1016/0005-2736(71)90120-9. [DOI] [PubMed] [Google Scholar]
- Perry M. M., John H. A., Thomas N. S. Actin-like filaments in the cleavage furrow of newt egg. Exp Cell Res. 1971 Mar;65(1):249–253. doi: 10.1016/s0014-4827(71)80075-7. [DOI] [PubMed] [Google Scholar]
- Peterkofsky B. Regulation of collagen secretion by ascorbic acid in 3T3 and chick embryo fibroblasts. Biochem Biophys Res Commun. 1972 Dec 4;49(5):1343–1350. doi: 10.1016/0006-291x(72)90614-6. [DOI] [PubMed] [Google Scholar]
- Pollard T. D., Ito S. Cytoplasmic filaments of Amoeba proteus. I. The role of filaments in consistency changes and movement. J Cell Biol. 1970 Aug;46(2):267–289. doi: 10.1083/jcb.46.2.267. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Puck T. T., Waldren C. A., Hsie A. W. Membrane dynamics in the action of dibutyryl adenosine 3':5'-cyclic monophosphate and testosterone on mammalian cells. Proc Natl Acad Sci U S A. 1972 Jul;69(7):1943–1947. doi: 10.1073/pnas.69.7.1943. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Puszkin S., Nicklas W. J., Berl S. Actomyosin-like protein in brain: subcellular distribution. J Neurochem. 1972 May;19(5):1319–1333. doi: 10.1111/j.1471-4159.1972.tb01457.x. [DOI] [PubMed] [Google Scholar]
- REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ROBBINS E., GONATAS N. K. IN VITRO SELECTION OF THE MITOTIC CELL FOR SUBSEQUENT ELECTRON MICROSCOPY. J Cell Biol. 1964 Feb;20:356–359. doi: 10.1083/jcb.20.2.356. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rhea R. P. Electron microscopic observations on the slime mold Physarum polycephalum with specific reference to fibrillar structures. J Ultrastruct Res. 1966 Jun;15(3):349–379. doi: 10.1016/s0022-5320(66)80113-2. [DOI] [PubMed] [Google Scholar]
- Robbins E., Jentzsch G. Rapid embedding of cell culture monolayers and suspensions for electron microscopy. J Histochem Cytochem. 1967 Mar;15(3):181–182. doi: 10.1177/15.3.181. [DOI] [PubMed] [Google Scholar]
- SABATINI D. D., BENSCH K., BARRNETT R. J. Cytochemistry and electron microscopy. The preservation of cellular ultrastructure and enzymatic activity by aldehyde fixation. J Cell Biol. 1963 Apr;17:19–58. doi: 10.1083/jcb.17.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SIMARD-DUQUESNE N., COUILLARD P. Ameboid movement, I. Reactivation of glycerinated models of Amoeba proteus with adenosinetriphosphate. Exp Cell Res. 1962 Oct;28:85–91. doi: 10.1016/0014-4827(62)90314-2. [DOI] [PubMed] [Google Scholar]
- SIMARD-DUQUESNE N., COUILLARD P. Ameboid movement. II. Research of contractile proteins in Amoeba proteus. Exp Cell Res. 1962 Oct;28:92–98. doi: 10.1016/0014-4827(62)90315-4. [DOI] [PubMed] [Google Scholar]
- SZENT-GYORGYI A. Free-energy relations and contraction of actomyosin. Biol Bull. 1949 Apr;96(2):140–161. [PubMed] [Google Scholar]
- Senda N., Shibata N., Tatsumi N., Kondo K., Hamada K. A contractile protein from leucocytes. Its extraction and some of its properties. Biochim Biophys Acta. 1969 May;181(1):191–200. doi: 10.1016/0005-2795(69)90241-4. [DOI] [PubMed] [Google Scholar]
- Shibata N., Tatsumi N., Tanaka K., Okamura Y., Senda N. A contractile protein possessing Ca 2+ sensitivity (natural actomyosin) from leucocytes. Its extraction and some of its properties. Biochim Biophys Acta. 1972 Feb 28;256(2):565–576. doi: 10.1016/0005-2728(72)90084-9. [DOI] [PubMed] [Google Scholar]
- Somogyi E., Sótonyi P., Bujdosó G. Electron-microscopic histochemical study of myosin ATP-ase activity. Histochemie. 1972;29(2):172–177. doi: 10.1007/BF00277285. [DOI] [PubMed] [Google Scholar]
- Spooner B. S., Yamada K. M., Wessells N. K. Microfilaments and cell locomotion. J Cell Biol. 1971 Jun;49(3):595–613. doi: 10.1083/jcb.49.3.595. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Staehelin L. A., Chlapowski F. J., Bonneville M. A. Lumenal plasma membrane of the urinary bladder. I. Three-dimensional reconstruction from freeze-etch images. J Cell Biol. 1972 Apr;53(1):73–91. doi: 10.1083/jcb.53.1.73. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Szent-Györgyi A. G. The role of actin-myosin interaction in contraction. Symp Soc Exp Biol. 1968;22:17–42. [PubMed] [Google Scholar]
- Szollosi D. Cortical cytoplasmic filaments of cleaving eggs: a structural element corresponding to the contractile ring. J Cell Biol. 1970 Jan;44(1):192–209. doi: 10.1083/jcb.44.1.192. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taylor A. C. Microtubules in the microspikes and cortical cytoplasm of isolated cells. J Cell Biol. 1966 Feb;28(2):155–168. doi: 10.1083/jcb.28.2.155. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tilney L. G., Gibbins J. R. Microtubules and filaments in the filopodia of the secondary mesenchyme cells of Arbacia punctulata and Echinarachnius parma. J Cell Sci. 1969 Jul;5(1):195–210. doi: 10.1242/jcs.5.1.195. [DOI] [PubMed] [Google Scholar]
- Tilney L. G., Mooseker M. Actin in the brush-border of epithelial cells of the chicken intestine. Proc Natl Acad Sci U S A. 1971 Oct;68(10):2611–2615. doi: 10.1073/pnas.68.10.2611. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wagner R., Rosenberg M., Estensen R. Endocytosis in Chang liver cells. Quantitation by sucrose- 3 H uptake and inhibition by cytochalasin B. J Cell Biol. 1971 Sep;50(3):804–817. doi: 10.1083/jcb.50.3.804. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weihing R. R., Korn E. D. Ameba actin: the presence of 3-methylhistidine. Biochem Biophys Res Commun. 1969 Jun 27;35(6):906–912. doi: 10.1016/0006-291x(69)90710-4. [DOI] [PubMed] [Google Scholar]
- Wessells N. K., Spooner B. S., Ash J. F., Bradley M. O., Luduena M. A., Taylor E. L., Wrenn J. T., Yamada K. Microfilaments in cellular and developmental processes. Science. 1971 Jan 15;171(3967):135–143. doi: 10.1126/science.171.3967.135. [DOI] [PubMed] [Google Scholar]
- Wilson F. J., Finck H. Actin: immunochemical and immunofluorescence studies. J Biochem. 1971 Jul;70(1):143–148. doi: 10.1093/oxfordjournals.jbchem.a129610. [DOI] [PubMed] [Google Scholar]
- Wohlfarth-Bottermann K. E. Cell structures and their significance for ameboid movement. Int Rev Cytol. 1964;16:61–131. doi: 10.1016/s0074-7696(08)60294-6. [DOI] [PubMed] [Google Scholar]
- Wohlman A., Allen R. D. Structural organization associated with pseudopod extension and contraction during cell locomotion in Difflugia. J Cell Sci. 1968 Mar;3(1):105–114. doi: 10.1242/jcs.3.1.105. [DOI] [PubMed] [Google Scholar]
- Woolley D. E. An actin-like protein from amoebae of dictyostelium discoideum. Arch Biochem Biophys. 1972 Jun;150(2):519–530. doi: 10.1016/0003-9861(72)90070-7. [DOI] [PubMed] [Google Scholar]
- Woolley D. E. Extraction of an actomyosin-like pootein from amoebae of Dictyostelium discoideum. J Cell Physiol. 1970 Oct;76(2):185–190. doi: 10.1002/jcp.1040760208. [DOI] [PubMed] [Google Scholar]
- Yang Y. Z., Perdue J. F. Contractile proteins of cultured cells. I. The isolation and characterization of an actin-like protein from cultured chick embryo fibroblasts. J Biol Chem. 1972 Jul 25;247(14):4503–4509. [PubMed] [Google Scholar]