Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1973 Sep 1;58(3):522–535. doi: 10.1083/jcb.58.3.522

BIOCHEMICAL CHANGES DURING GROWTH AND ENCYSTMENT OF THE CELLULAR SLIME MOLD POLYSPHONDYLIUM PALLIDUM

S Githens III 1, M L Karnovsky 1
PMCID: PMC2109073  PMID: 4795859

Abstract

The growth of the cellular slime mold, Polysphondylium pallidum, was studied on a semidefined medium in shaken suspension. When the medium contained large quantities of particulate material, growth was more rapid and the cellular size and protein content were smaller than when growth occurred on a medium containing less particulate material. The cellular levels of DNA, RNA, and protein; of lysosomal enzymes (acid phosphatase, acid proteinase); and of peroxisomal enzymes (catalase) were assayed during growth and the subsequent stationary phase that led eventually to encystment. Only DNA remained at a constant cellular level. Encystment of exponentially growing cells could also be initiated by washing them and introducing them into a soluble peptone medium. The rate of encystment was proportional to the osmolarity of this medium. The encystment process was followed with respect to the cellular levels of DNA, RNA, protein, carbohydrates, acid phosphatase, acid β-N-Ac-glucosaminidase, and catalase. The most dramatic change occurred in the cellular cellulose content, which increased by at least an order of magnitude by the time encystment was morphologically complete. It was concluded that the encystment of this slime mold in suspension exhibits a number of biochemical similarities to the development of this and other cellular slime molds on a surface.

Full Text

The Full Text of this article is available as a PDF (906.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashworth J. M., Watts D. J. Metabolism of the cellular slime mould Dictyostelium discoideum grown in axenic culture. Biochem J. 1970 Sep;119(2):175–182. doi: 10.1042/bj1190175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BURTON K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J. 1956 Feb;62(2):315–323. doi: 10.1042/bj0620315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baudhuin P., Beaufay H., Rahman-Li Y., Sellinger O. Z., Wattiaux R., Jacques P., De Duve C. Tissue fractionation studies. 17. Intracellular distribution of monoamine oxidase, aspartate aminotransferase, alanine aminotransferase, D-amino acid oxidase and catalase in rat-liver tissue. Biochem J. 1964 Jul;92(1):179–184. doi: 10.1042/bj0920179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. DE DUVE C., PRESSMAN B. C., GIANETTO R., WATTIAUX R., APPELMANS F. Tissue fractionation studies. 6. Intracellular distribution patterns of enzymes in rat-liver tissue. Biochem J. 1955 Aug;60(4):604–617. doi: 10.1042/bj0600604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. De Duve C., Baudhuin P. Peroxisomes (microbodies and related particles). Physiol Rev. 1966 Apr;46(2):323–357. doi: 10.1152/physrev.1966.46.2.323. [DOI] [PubMed] [Google Scholar]
  6. De Duve C., Wattiaux R. Functions of lysosomes. Annu Rev Physiol. 1966;28:435–492. doi: 10.1146/annurev.ph.28.030166.002251. [DOI] [PubMed] [Google Scholar]
  7. Gerisch G. Cell aggregation and differentiation in Dictyostelium. Curr Top Dev Biol. 1968;3:157–197. doi: 10.1016/s0070-2153(08)60354-3. [DOI] [PubMed] [Google Scholar]
  8. Gerisch G., Malchod, Wilhelms H., Lüderitz O. Artspezifität Polysaccharid-haltiger Zellmembran-Antigene von Dictyostelium discoideum. Eur J Biochem. 1969 Jun;9(2):229–236. doi: 10.1111/j.1432-1033.1969.tb00599.x. [DOI] [PubMed] [Google Scholar]
  9. Githens S., 3rd, Karnovsky M. L. Phagocytosis by the cellular slime mold Polysphondylium pallidum during growth and development. J Cell Biol. 1973 Sep;58(3):536–548. doi: 10.1083/jcb.58.3.536. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. HOHL H. R., RAPER K. B. Nutrition of cellular slime molds. I. Growth on living and dead bacteria. J Bacteriol. 1963 Jan;85:191–198. doi: 10.1128/jb.85.1.191-198.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. HOHL H. R., RAPER K. B. Nutrition of cellular slime molds. II. Growth of Polysphondylium pallidum in axenic culture. J Bacteriol. 1963 Jan;85:199–206. doi: 10.1128/jb.85.1.199-206.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. HOHL H., RAPER K. B. NUTRITION OF CELLULAR SLIME MOLDS. III. SPECIFIC GROWTH REQUIREMENTS OF POLYSPHONDYLIUM PALLIDUM. J Bacteriol. 1963 Dec;86:1314–1320. doi: 10.1128/jb.86.6.1314-1320.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hohl H. R., Miura-Santo L. Y., Cotter D. A. Ultrastructural changes during formation and germination of microcysts in Polysphondylium pallidum, a cellular slime mould. J Cell Sci. 1970 Jul;7(1):285–305. doi: 10.1242/jcs.7.1.285. [DOI] [PubMed] [Google Scholar]
  14. Loomis W. F., Jr Acetylglucosaminidase, an early enzyme in the development of Dictyostelium discoideum. J Bacteriol. 1969 Mar;97(3):1149–1154. doi: 10.1128/jb.97.3.1149-1154.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Pekarthy J. M., Short J., Lansing A. I., Lieberman I. Function and control of liver alkaline phosphatase. J Biol Chem. 1972 Mar 25;247(6):1767–1774. [PubMed] [Google Scholar]
  16. Rasmussen L., Kludt T. A. Particulate material as a prerequisite for rapid cell multiplication in Tetrahymena cultures. Exp Cell Res. 1970 Mar;59(3):457–463. doi: 10.1016/0014-4827(70)90654-3. [DOI] [PubMed] [Google Scholar]
  17. SUSSMAN M. Growth of the cellular slime mold Polysphondylium pallidum in a simple nutrient medium. Science. 1963 Jan 25;139(3552):338–338. doi: 10.1126/science.139.3552.338. [DOI] [PubMed] [Google Scholar]
  18. Sussman R. R. RNA metabolism during cytodifferentiation in the cellular slime mold Polysphondelium pallidum. Biochim Biophys Acta. 1967 Dec 19;149(2):407–421. doi: 10.1016/0005-2787(67)90169-4. [DOI] [PubMed] [Google Scholar]
  19. TREVELYAN W. E., PROCTER D. P., HARRISON J. S. Detection of sugars on paper chromatograms. Nature. 1950 Sep 9;166(4219):444–445. doi: 10.1038/166444b0. [DOI] [PubMed] [Google Scholar]
  20. Toama M. A., Raper K. B. Microcysts of the cellular slime mold Polysphondylium pallidum. I. Factors influencing microcyst formation. J Bacteriol. 1967 Oct;94(4):1143–1149. doi: 10.1128/jb.94.4.1143-1149.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Toama M. A., Raper K. B. Microcysts of the cellular slime mold Polysphondylium pallidum. II. Chemistry of the microcyst walls. J Bacteriol. 1967 Oct;94(4):1150–1153. doi: 10.1128/jb.94.4.1150-1153.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ulsamer A. G., Wright P. L., Wetzel M. G., Korn E. D. Plasma and phagosome membranes of Acanthamoeba castellanii. J Cell Biol. 1971 Oct;51(1):193–215. doi: 10.1083/jcb.51.1.193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. WHITE G. J., SUSSMAN M. Metabolism of major cell components during slime mold morphogenesis. Biochim Biophys Acta. 1961 Oct 28;53:285–293. doi: 10.1016/0006-3002(61)90441-3. [DOI] [PubMed] [Google Scholar]
  24. WHITE G. J., SUSSMAN M. Polysaccharides involved in slimemold development. I. Water-soluble glucose polymer (s). Biochim Biophys Acta. 1963 Jul 16;74:173–178. doi: 10.1016/0006-3002(63)91355-6. [DOI] [PubMed] [Google Scholar]
  25. Watts D. J., Ashworth J. M. Growth of myxameobae of the cellular slime mould Dictyostelium discoideum in axenic culture. Biochem J. 1970 Sep;119(2):171–174. doi: 10.1042/bj1190171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Wiener E., Ashworth J. M. The isolation and characterization of lysosomal particles from myxamoebae of the cellular slime mould Dictyostelium discoideum. Biochem J. 1970 Jul;118(3):505–512. doi: 10.1042/bj1180505. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES