Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1973 Sep 1;58(3):574–593. doi: 10.1083/jcb.58.3.574

STRUCTURE OF LIMULUS STRIATED MUSCLE

The Contractile Apparatus at Various Sarcomere Lengths

Maynard M Dewey 1, Rhea J C Levine 1, David E Colflesh 1
PMCID: PMC2109074  PMID: 4747917

Abstract

The musculature of the telson of Limulus polyphemus L. consists of three dorsal muscles: the medial and lateral telson levators and the telson abductor, and one large ventral muscle; the telson depressor, which has three major divisions: the dorsal, medioventral, and lateroventral heads. The telson muscles are composed of one type of striated muscle fiber, which has irregularly shaped myofibrils. The sarcomeres are long, with discrete A and I and discontinuous Z bands. M lines are not present. H zones can be identified easily, only in thick (1.0 µm) longitudinal sections or thin cross sections. In lengthened fibers, the Z bands are irregular and the A bands appear very long due to misalignment of constituent thick filaments. As the sarcomeres shorten, the Z lines straighten somewhat and the thick filaments become more aligned within the A band, leading to apparent decrease in A band length. Further A band shortening, seen at sarcomere lengths below 7.4 µm may be a function of conformational changes of the thick filaments, possibly brought about by alterations in the ordering of their paramyosin cores.

Full Text

The Full Text of this article is available as a PDF (2.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cochrane D. G., Elder H. Y., Usherwood P. N. Physiology and ultrastructure of phasic and tonic skeletal muscle fibres in the locust, Schistocerca gregaria. J Cell Sci. 1972 Mar;10(2):419–441. doi: 10.1242/jcs.10.2.419. [DOI] [PubMed] [Google Scholar]
  2. DE VILLAFRANCA G. W. The A and IB and lengths in stretched or contracted horseshoe crab skeletal muscle. J Ultrastruct Res. 1961 Apr;5:109–115. doi: 10.1016/s0022-5320(61)90008-9. [DOI] [PubMed] [Google Scholar]
  3. DEVILLAFRANCA G. W., MARSCHHAUS C. E. CONTRACTION OF THE A BAND. J Ultrastruct Res. 1963 Aug;49:156–165. doi: 10.1016/s0022-5320(63)80043-x. [DOI] [PubMed] [Google Scholar]
  4. Fahrenbach W. H. The fine structure of fast and slow crustacean muscles. J Cell Biol. 1967 Oct;35(1):69–79. doi: 10.1083/jcb.35.1.69. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Franzini-Armstrong C. Natural variability in the length of thin and thick filaments in single fibres from a crab, Portunus depurator. J Cell Sci. 1970 Mar;6(2):559–592. doi: 10.1242/jcs.6.2.559. [DOI] [PubMed] [Google Scholar]
  6. Gilmour D., Robinson P. M. CONTRACTION IN GLYCERINATED MYOFIBRILS OF AN INSECT (ORTHOPTERA, ACRIDIDAE). J Cell Biol. 1964 Jun 1;21(3):385–396. doi: 10.1083/jcb.21.3.385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hagopian M., Spiro D. The filament lattice of cockroach thoracic muscle. J Cell Biol. 1968 Mar;36(3):433–442. doi: 10.1083/jcb.36.3.433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hagopian M. The myofilament arrangement in the femoral muscle of the cockroach, Leucophaea maderae fabricius. J Cell Biol. 1966 Mar;28(3):545–562. doi: 10.1083/jcb.28.3.545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hardwicke P. M., Hanson J. Separation of thick and thin myofilaments. J Mol Biol. 1971 Aug 14;59(3):509–516. doi: 10.1016/0022-2836(71)90314-7. [DOI] [PubMed] [Google Scholar]
  10. Hoyle G. Comparative aspects of muscle. Annu Rev Physiol. 1969;31:43–84. doi: 10.1146/annurev.ph.31.030169.000355. [DOI] [PubMed] [Google Scholar]
  11. Hoyle G., McAlear J. H., Selverston A. Mechanism of supercontraction in a striated muscle. J Cell Biol. 1965 Aug;26(2):621–640. doi: 10.1083/jcb.26.2.621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Levine R. J., Dewey M. M., De Villafranca G. W. Immunohistochemical localization of contractile proteins in limulus striated muscle. J Cell Biol. 1972 Oct;55(1):221–235. doi: 10.1083/jcb.55.1.221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Leyton R. A., Sonnenblick E. H. Cardiac muscle of the horseshoe crab, Limulus polyphemus. I. Ultrastructure. J Cell Biol. 1971 Jan;48(1):101–119. doi: 10.1083/jcb.48.1.101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Leyton R. A., Ullrick W. G. Z disc ultrastructure in scutal depressor fibers of the barnacle. Science. 1970 Apr 3;168(3927):127–128. doi: 10.1126/science.168.3927.127. [DOI] [PubMed] [Google Scholar]
  15. PADYKULA H. A., GAUTHIER G. F. Cytochemical studies of adenosine triphosphatases in skeletal muscle fibers. J Cell Biol. 1963 Jul;18:87–107. doi: 10.1083/jcb.18.1.87. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Page S. G. A comparison of the fine structures of frog slow and twitch muscle fibers. J Cell Biol. 1965 Aug;26(2):477–497. doi: 10.1083/jcb.26.2.477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Peachey L. D. Muscle. Annu Rev Physiol. 1968;30:401–440. doi: 10.1146/annurev.ph.30.030168.002153. [DOI] [PubMed] [Google Scholar]
  18. Pepe F. A. The myosin filament. I. Structural organization from antibody staining observed in electron microscopy. J Mol Biol. 1967 Jul 28;27(2):203–225. doi: 10.1016/0022-2836(67)90016-2. [DOI] [PubMed] [Google Scholar]
  19. Perkins F. O., Ramsey R. W., Street S. F. The ultrastructure of fishing tentacle muscle in the jellyfish Chrysaora quinquecirrha: a comparison of contracted and relaxed states. J Ultrastruct Res. 1971 Jun;35(5):431–450. doi: 10.1016/s0022-5320(71)80004-7. [DOI] [PubMed] [Google Scholar]
  20. REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. ROHLICH P. The fine structure of the muscle fiber of the leech, Hirudo medicinalis. J Ultrastruct Res. 1962 Dec;7:399–408. doi: 10.1016/s0022-5320(62)90036-9. [DOI] [PubMed] [Google Scholar]
  22. Squire J. M. General model for the structure of all myosin-containing filaments. Nature. 1971 Oct 15;233(5320):457–462. doi: 10.1038/233457a0. [DOI] [PubMed] [Google Scholar]
  23. Stephens R. E. Anomalous contraction of invertebrate striated muscle. J Cell Biol. 1965 Dec;27(3):639–649. doi: 10.1083/jcb.27.3.639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Szent-Györgyi A. G., Cohen C., Kendrick-Jones J. Paramyosin and the filaments of molluscan "catch" muscles. II. Native filaments: isolation and characterization. J Mol Biol. 1971 Mar 14;56(2):239–258. doi: 10.1016/0022-2836(71)90462-1. [DOI] [PubMed] [Google Scholar]
  25. Twarog B. M. The regulation of catch in molluscan muscle. J Gen Physiol. 1967 Jul;50(6 Suppl):157–169. doi: 10.1085/jgp.50.6.157. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES