Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1973 Nov 1;59(2):395–406. doi: 10.1083/jcb.59.2.395

ANIONIC SITES OF HUMAN ERYTHROCYTE MEMBRANES

II. Antispectrin-Induced Transmembrane Aggregation of the Binding Sites for Positively Charged Colloidal Particles

Garth L Nicolson 1, Richard G Painter 1
PMCID: PMC2109082  PMID: 4141707

Abstract

The effects of affinity-purified antispectrin γ-globulins on the topographic distribution of anionic residues on human erythrocytes membranes was investigated using collo ida iron hydroxide labeling of mounted, fixed, ghost membranes. Antispectrin γ-globulins were sequestered inside ghosts by hemolysis and the ghosts were incubated for 30 min at 37°C and then fixed with glutaraldehyde. The topographic distribution of colloidal iron hydroxide clusters on ghosts incubated with low (<0.05 mg/ml) or high (>5–10 mg/ml concentrations of sequestered antispectrin was dispersed, but the distribution at intermediate concentrations (0.1–5 mg/ml) was highly aggregated. The aggregation of colloidal iron hydroxide binding sites was time and temperature dependent and required the sequestering of cross-linking antibodies (antispectrin Fab could not substitute for γ-globulin antibodies) inside the ghosts. Prior glutaraldehyde fixation or fixation at the time of hemolysis in antispectrin solutions prevented the antispectrin-induced colloidal iron site aggregation. The antispectrin reacted exclusively at the inner ghost membrane surface and the colloidal iron hydroxide bound to N-acetylneuraminic acid residues on the outer membrane surface which are overwhelming on the sialoglycoprotein glycophorin. These results were interpreted as evidence for a structural transmembrane linkage between the inner surface peripheral protein spectrin and the integral membrane component glycophorin.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bretscher M. S. A major protein which spans the human erythrocyte membrane. J Mol Biol. 1971 Jul 28;59(2):351–357. doi: 10.1016/0022-2836(71)90055-6. [DOI] [PubMed] [Google Scholar]
  2. Bretscher M. S. Asymmetrical lipid bilayer structure for biological membranes. Nat New Biol. 1972 Mar 1;236(61):11–12. doi: 10.1038/newbio236011a0. [DOI] [PubMed] [Google Scholar]
  3. Bretscher M. S. Human erythrocyte membranes: specific labelling of surface proteins. J Mol Biol. 1971 Jun 28;58(3):775–781. doi: 10.1016/0022-2836(71)90039-8. [DOI] [PubMed] [Google Scholar]
  4. Clarke M. Isolation and characterization of a water-soluble protein from bovine erythrocyte membranes. Biochem Biophys Res Commun. 1971 Nov;45(4):1063–1070. doi: 10.1016/0006-291x(71)90445-1. [DOI] [PubMed] [Google Scholar]
  5. Cuatrecasas P. Insulin-sepharose: immunoreactivity and use in the purification of antibody. Biochem Biophys Res Commun. 1969 May 22;35(4):531–537. doi: 10.1016/0006-291x(69)90379-9. [DOI] [PubMed] [Google Scholar]
  6. DODGE J. T., MITCHELL C., HANAHAN D. J. The preparation and chemical characteristics of hemoglobin-free ghosts of human erythrocytes. Arch Biochem Biophys. 1963 Jan;100:119–130. doi: 10.1016/0003-9861(63)90042-0. [DOI] [PubMed] [Google Scholar]
  7. EYLAR E. H., MADOFF M. A., BRODY O. V., ONCLEY J. L. The contribution of sialic acid to the surface charge of the erythrocyte. J Biol Chem. 1962 Jun;237:1992–2000. [PubMed] [Google Scholar]
  8. Edidin M., Weiss A. Antigen cap formation in cultured fibroblasts: a reflection of membrane fluidity and of cell motility. Proc Natl Acad Sci U S A. 1972 Sep;69(9):2456–2459. doi: 10.1073/pnas.69.9.2456. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fairbanks G., Steck T. L., Wallach D. F. Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry. 1971 Jun 22;10(13):2606–2617. doi: 10.1021/bi00789a030. [DOI] [PubMed] [Google Scholar]
  10. Gasic G. J., Berwick L., Sorrentino M. Positive and negative colloidal iron as cell surface electron stains. Lab Invest. 1968 Jan;18(1):63–71. [PubMed] [Google Scholar]
  11. Guidotti G. Membrane proteins. Annu Rev Biochem. 1972;41:731–752. doi: 10.1146/annurev.bi.41.070172.003503. [DOI] [PubMed] [Google Scholar]
  12. Jacob H. S., Ruby A., Overland E. S., Mazia D. Abnormal membrane protein of red blood cells in hereditary spherocytosis. J Clin Invest. 1971 Sep;50(9):1800–1805. doi: 10.1172/JCI106670. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ji T. H. Cross-linking sialoglycoproteins of human erythrocyte membranes. Biochem Biophys Res Commun. 1973 Jul 17;53(2):508–514. doi: 10.1016/0006-291x(73)90691-8. [DOI] [PubMed] [Google Scholar]
  14. Karnovsky M. J., Unanue E. R., Leventhal M. Ligand-induced movement of lymphocyte membrane macromolecules. II. Mapping of surface moieties. J Exp Med. 1972 Oct 1;136(4):907–930. doi: 10.1084/jem.136.4.907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kourilsky F. M., Silvestre D., Neauport-Sautes C., Loosfelt Y., Dausset J. Antibody-induced redistribution of HL-A antigens at the cell surface. Eur J Immunol. 1972 Jun;2(3):249–257. doi: 10.1002/eji.1830020311. [DOI] [PubMed] [Google Scholar]
  16. MORAWIECKI A. DISSOCIATION OF M- AND N-GROUP MUCOPROTEINS INTO SUBUNITS IN DETERGENT SOLUTIONS. Biochim Biophys Acta. 1964 Nov 1;83:339–347. doi: 10.1016/0926-6526(64)90012-6. [DOI] [PubMed] [Google Scholar]
  17. Marchesi V. T., Palade G. E. The localization of Mg-Na-K-activated adenosine triphosphatase on red cell ghost membranes. J Cell Biol. 1967 Nov;35(2):385–404. doi: 10.1083/jcb.35.2.385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Marchesi V. T., Steers E., Jr Selective solubilization of a protein component of the red cell membrane. Science. 1968 Jan 12;159(3811):203–204. doi: 10.1126/science.159.3811.203. [DOI] [PubMed] [Google Scholar]
  19. Marchesi V. T., Tillack T. W., Jackson R. L., Segrest J. P., Scott R. E. Chemical characterization and surface orientation of the major glycoprotein of the human erythrocyte membrane. Proc Natl Acad Sci U S A. 1972 Jun;69(6):1445–1449. doi: 10.1073/pnas.69.6.1445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Mazia D., Ruby A. Dissolution of erythrocyte membranes in water and comparison of the membrane protein with other structural proteins. Proc Natl Acad Sci U S A. 1968 Nov;61(3):1005–1012. doi: 10.1073/pnas.61.3.1005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Nicolson G. L. A rapid method for determining the topological distribution of anionic sites on membrane surfaces. J Supramol Struct. 1972;1(2):159–164. doi: 10.1002/jss.400010209. [DOI] [PubMed] [Google Scholar]
  22. Nicolson G. L. Anionic sites of human erythrocyte membranes. I. Effects of trypsin, phospholipase C, and pH on the topography of bound positively charged colloidal particles. J Cell Biol. 1973 May;57(2):373–387. doi: 10.1083/jcb.57.2.373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Nicolson G. L., Marchesi V. T., Singer S. J. The localization of spectrin on the inner surface of human red blood cell membranes by ferritin-conjugated antibodies. J Cell Biol. 1971 Oct;51(1):265–272. doi: 10.1083/jcb.51.1.265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Nicolson G. L., Singer S. J. Ferritin-conjugated plant agglutinins as specific saccharide stains for electron microscopy: application to saccharides bound to cell membranes. Proc Natl Acad Sci U S A. 1971 May;68(5):942–945. doi: 10.1073/pnas.68.5.942. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Nicolson G. L. Topography of membrane concanavalin A sites modified by proteolysis. Nat New Biol. 1972 Oct 18;239(94):193–197. doi: 10.1038/newbio239193a0. [DOI] [PubMed] [Google Scholar]
  26. PORTER R. R. The hydrolysis of rabbit y-globulin and antibodies with crystalline papain. Biochem J. 1959 Sep;73:119–126. doi: 10.1042/bj0730119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Painter R. G., Tokuyasu K. T., Singer S. J. Immunoferritin localization of intracellular antigens: the use of ultracryotomy to obtain ultrathin sections suitable for direct immunoferritin staining. Proc Natl Acad Sci U S A. 1973 Jun;70(6):1649–1653. doi: 10.1073/pnas.70.6.1649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Perrone J. R., Blostein R. Asymmetric interaction of inside-out and right-side-out erythrocyte membrane vesicles with ouabain. Biochim Biophys Acta. 1973 Feb 16;291(3):680–689. doi: 10.1016/0005-2736(73)90473-2. [DOI] [PubMed] [Google Scholar]
  29. Phillips D. R., Morrison M. Exposed protein on the intact human erythrocyte. Biochemistry. 1971 May 11;10(10):1766–1771. doi: 10.1021/bi00786a006. [DOI] [PubMed] [Google Scholar]
  30. Pinto da Silva P., Douglas S. D., Branton D. Localization of A antigen sites on human erythrocyte ghosts. Nature. 1971 Jul 16;232(5307):194–196. doi: 10.1038/232194a0. [DOI] [PubMed] [Google Scholar]
  31. Pinto da Silva P. Translational mobility of the membrane intercalated particles of human erythrocyte ghosts. pH-dependent, reversible aggregation. J Cell Biol. 1972 Jun;53(3):777–787. doi: 10.1083/jcb.53.3.777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Reynolds J. A., Trayer H. Solubility of membrane proteins in aqueous media. J Biol Chem. 1971 Dec 10;246(23):7337–7342. [PubMed] [Google Scholar]
  33. Seeman P. Transient holes in the erythrocyte membrane during hypotonic hemolysis and stable holes in the membrane after lysis by saponin and lysolecithin. J Cell Biol. 1967 Jan;32(1):55–70. doi: 10.1083/jcb.32.1.55. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Segrest J. P., Kahane I., Jackson R. L., Marchesi V. T. Major glycoprotein of the human erythrocyte membrane: evidence for an amphipathic molecular structure. Arch Biochem Biophys. 1973 Mar;155(1):167–183. doi: 10.1016/s0003-9861(73)80019-0. [DOI] [PubMed] [Google Scholar]
  35. Singer S. J., Nicolson G. L. The fluid mosaic model of the structure of cell membranes. Science. 1972 Feb 18;175(4023):720–731. doi: 10.1126/science.175.4023.720. [DOI] [PubMed] [Google Scholar]
  36. Steck T. L., Fairbanks G., Wallach D. F. Disposition of the major proteins in the isolated erythrocyte membrane. Proteolytic dissection. Biochemistry. 1971 Jun 22;10(13):2617–2624. doi: 10.1021/bi00789a031. [DOI] [PubMed] [Google Scholar]
  37. Tillack T. W., Scott R. E., Marchesi V. T. The structure of erythrocyte membranes studied by freeze-etching. II. Localization of receptors for phytohemagglutinin and influenza virus to the intramembranous particles. J Exp Med. 1972 Jun 1;135(6):1209–1227. doi: 10.1084/jem.135.6.1209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Triplett R. B., Carraway K. L. Proteolytic digestion of erythrocytes, resealed ghosts, and isolated membranes. Biochemistry. 1972 Jul 18;11(15):2897–2903. doi: 10.1021/bi00765a024. [DOI] [PubMed] [Google Scholar]
  39. Unanue E. R., Perkins W. D., Karnovsky M. J. Ligand-induced movement of lymphocyte membrane macromolecules. I. Analysis by immunofluorescence and ultrastructural radioautography. J Exp Med. 1972 Oct 1;136(4):885–906. doi: 10.1084/jem.136.4.885. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Weed R. I., LaCelle P. L., Merrill E. W. Metabolic dependence of red cell deformability. J Clin Invest. 1969 May;48(5):795–809. doi: 10.1172/JCI106038. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Weiss L., Jung O. S., Zeigel R. The topography of some anionic sites at the surfaces of fixed Ehrlich ascites tumour cells. Int J Cancer. 1972 Jan 15;9(1):48–56. doi: 10.1002/ijc.2910090107. [DOI] [PubMed] [Google Scholar]
  42. Weiss L., Mayhew E. Ribonuclease-susceptible charged groups at the surface of Ehrlich ascites tumour cells. Int J Cancer. 1969 Sep 15;4(5):626–635. doi: 10.1002/ijc.2910040507. [DOI] [PubMed] [Google Scholar]
  43. Weiss L., Zeigel R. Heterogeneity of anionic sites at the electrokinetic surfaces of fixed Ehrlich ascites tumor cells. J Theor Biol. 1972 Jan;34(1):21–27. doi: 10.1016/0022-5193(72)90051-3. [DOI] [PubMed] [Google Scholar]
  44. Weiss L., Zeigel R., Jung O. S., Bross I. D. Binding of positively charged particles to glutaraldehyde-fixed human erythrocytes. Exp Cell Res. 1972 Jan;70(1):57–64. doi: 10.1016/0014-4827(72)90181-4. [DOI] [PubMed] [Google Scholar]
  45. Winzler R. J. Carbohydrates in cell surfaces. Int Rev Cytol. 1970;29:77–125. doi: 10.1016/s0074-7696(08)60033-9. [DOI] [PubMed] [Google Scholar]
  46. Winzler R. J., Harris E. D., Pekas D. J., Johnson C. A., Weber P. Studies on glycopeptides released by trypsin from intact human erythrocytes. Biochemistry. 1967 Jul;6(7):2195–2202. doi: 10.1021/bi00859a042. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES