Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1973 Nov 1;59(2):276–303. doi: 10.1083/jcb.59.2.276

HORMONE SECRETION BY CELLS DISSOCIATED FROM RAT ANTERIOR PITUITARIES

Colin R Hopkins 1, Marilyn G Farquhar 1
PMCID: PMC2109084  PMID: 4375681

Abstract

A new procedure has been developed for dissociating anterior pituitary tissue and producing a viable suspension of single cells. The procedure involves incubation of small tissue blocks in 1 mg/ml trypsin (15 min), followed by incubation in 8 µg/ml neuraminidase and 1 mM EDTA (15 min), followed by mechanical dispersion. Cell yields are ∼55%, based on recovered DNA. By electron microscopy five types of secretory cells (somatotrophs, mammotrophs, thyrotrophs, gonadotrophs, and corticotrophs) plus endothelial and follicular cells can be identified and are morphologically well preserved up to 20 h after dissociation. Throughout this period, the cells incorporate linearly [3H]leucine into protein for up to 4 h at a rate 90% greater than hemipituitaries, and they synthesize, transport intracellularly, and release the two major pituitary secretory products, growth hormone and prolactin. Immediately after dissociation the cells' ability to respond to secretogogues (high K+ and dibutyryl cyclic AMP) is impaired, but after a 6–12-h culture period, the cells apparently recover and discharge 24% and 52%, respectively, of their content of prelabeled growth hormone over a 3-h period in response to these two secretogogues. This represents a stimulation of 109% and 470% over that released by cells incubated in control medium. The results demonstrate that function and morphologic integrity are preserved in this cell system. Therefore it is suitable for the study of various aspects of pituitary secretion and its control.

Full Text

The Full Text of this article is available as a PDF (3.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amsterdam A., Jamieson J. D. Structural and functional characterization of isolated pancreatic exocrine cells. Proc Natl Acad Sci U S A. 1972 Oct;69(10):3028–3032. doi: 10.1073/pnas.69.10.3028. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BURTON K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J. 1956 Feb;62(2):315–323. doi: 10.1042/bj0620315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bainton D. F., Farquhar M. G. Differences in enzyme content of azurophil and specific granules of polymorphonuclear leukocytes. II. Cytochemistry and electron microscopy of bone marrow cells. J Cell Biol. 1968 Nov;39(2):299–317. doi: 10.1083/jcb.39.2.299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Barnard P. J., Weiss L., Ratcliffe T. Changes in the surface properties of embryonic chick neural retina cells after dissociation. Exp Cell Res. 1969 Mar;54(3):293–301. doi: 10.1016/0014-4827(69)90205-5. [DOI] [PubMed] [Google Scholar]
  5. Berry M. N., Friend D. S. High-yield preparation of isolated rat liver parenchymal cells: a biochemical and fine structural study. J Cell Biol. 1969 Dec;43(3):506–520. doi: 10.1083/jcb.43.3.506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Burger M. M. A difference in the architecture of the surface membrane of normal and virally transformed cells. Proc Natl Acad Sci U S A. 1969 Mar;62(3):994–1001. doi: 10.1073/pnas.62.3.994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Burger M. M., Goldberg A. R. Identification of a tumor-specific determinant on neoplastic cell surfaces. Proc Natl Acad Sci U S A. 1967 Feb;57(2):359–366. doi: 10.1073/pnas.57.2.359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. CARO L. G., VAN TUBERGEN R. P., KOLB J. A. High-resolution autoradiography. I. Methods. J Cell Biol. 1962 Nov;15:173–188. doi: 10.1083/jcb.15.2.173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Castle J. D., Jamieson J. D., Palade G. E. Radioautographic analysis of the secretory process in the parotid acinar cell of the rabbit. J Cell Biol. 1972 May;53(2):290–311. doi: 10.1083/jcb.53.2.290. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Codington J. F., Sanford B. H., Jeanloz R. W. Glycoprotein coat of the TA 3 cell. I. Removal of carbohydrate and protein material from viable cells. J Natl Cancer Inst. 1970 Oct;45(4):637–647. [PubMed] [Google Scholar]
  11. Cuatrecasas P., Illiano G. Membrane sialic acid and the mechanism of insulin action in adipose tissue cells. Effects of digestion with neuraminidase. J Biol Chem. 1971 Aug 25;246(16):4938–4946. [PubMed] [Google Scholar]
  12. Currie G. A., Van Doorninck W., Bagshawe K. D. Effect of neuraminidase on the immunogenicity of early mouse trophoblast. Nature. 1968 Jul 13;219(5150):191–192. doi: 10.1038/219191a0. [DOI] [PubMed] [Google Scholar]
  13. EAGLE H. Amino acid metabolism in mammalian cell cultures. Science. 1959 Aug 21;130(3373):432–437. doi: 10.1126/science.130.3373.432. [DOI] [PubMed] [Google Scholar]
  14. Ewart R. B., Taylor K. W. The regulation of growth hormone secretion from the isolated rat anterior pituitary in vitro. The role of adenosine 3':5'-cyclic monophosphate. Biochem J. 1971 Oct;124(4):815–826. doi: 10.1042/bj1240815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. FARQUHAR M. G. Fine structure and function in capillaries of the anterior pituitary gland. Angiology. 1961 Jul;12:270–292. doi: 10.1177/000331976101200704. [DOI] [PubMed] [Google Scholar]
  16. Farquhar M. G., Palade G. E. Cell junctions in amphibian skin. J Cell Biol. 1965 Jul;26(1):263–291. doi: 10.1083/jcb.26.1.263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gospodarowicz D., Gospodarowicz F. A technique for the isolation of bovine luteal cells and its application to metabolic studies of luteal cells in vitro. Endocrinology. 1972 Jun;90(6):1427–1434. doi: 10.1210/endo-90-6-1427. [DOI] [PubMed] [Google Scholar]
  18. Halkerston I. D., Feinstein M., Hechter O. Effect of lytic enzymes upon the responsivity of rat adrenals in vitro. I. Effect of trypsin upon the steroidogenic action of reduced triphosphopyridine nucleotide. Endocrinology. 1968 Jul;83(1):61–73. doi: 10.1210/endo-83-1-61. [DOI] [PubMed] [Google Scholar]
  19. Hopkins C. R. The biosynthesis, intracellular transport, and packaging of melanocyte-stimulating peptides in the amphibian pars intermedia. J Cell Biol. 1972 Jun;53(3):642–653. doi: 10.1083/jcb.53.3.642. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Howard R. B., Christensen A. K., Gibbs F. A., Pesch L. A. The enzymatic preparation of isolated intact parenchymal cells from rat liver. J Cell Biol. 1967 Dec;35(3):675–684. doi: 10.1083/jcb.35.3.675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Howell S. L., Kostianovsky M., Lacy P. E. Beta granule formation in isolated islets of langerhans: a study by electron microscopic radioautography. J Cell Biol. 1969 Sep;42(3):695–705. doi: 10.1083/jcb.42.3.695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Hughes R. C., Sanford B., Jeanloz R. W. Regeneration of the surface glycoproteins of a transplantable mouse tumor cell after treatment with neuraminidase. Proc Natl Acad Sci U S A. 1972 Apr;69(4):942–945. doi: 10.1073/pnas.69.4.942. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Hymer W. C., Evans W. H., Kraicer J., Mastro A., Davis J., Griswold E. Enrichment of cell types from the rat adenohypophysis by sedimentation at unit gravity. Endocrinology. 1973 Jan;92(1):275–287. doi: 10.1210/endo-92-1-275. [DOI] [PubMed] [Google Scholar]
  24. Hymer W. C., Kraicer J., Bencosme S. A., Haskill J. S. Separation of somatotrophs from the rat adenohypophysis by velocity and density gradient centrifugation. Proc Soc Exp Biol Med. 1972 Dec;141(3):966–973. doi: 10.3181/00379727-141-36912. [DOI] [PubMed] [Google Scholar]
  25. Ishikawa H. Isolation of different types of anterior pituitary cells in rats. Endocrinol Jpn. 1969 Oct;16(5):517–529. doi: 10.1507/endocrj1954.16.517. [DOI] [PubMed] [Google Scholar]
  26. JONES A. E., FISHER J. N., LEWIS U. J., VANDERLAAN W. P. ELECTROPHORETIC COMPARISON OF PITUITARY GLANDS FROM MALE AND FEMALE RATS. Endocrinology. 1965 Apr;76:578–583. doi: 10.1210/endo-76-4-578. [DOI] [PubMed] [Google Scholar]
  27. Jamieson J. D., Palade G. E. Intracellular transport of secretory proteins in the pancreatic exocrine cell. I. Role of the peripheral elements of the Golgi complex. J Cell Biol. 1967 Aug;34(2):577–596. doi: 10.1083/jcb.34.2.577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Jamieson J. D., Palade G. E. Intracellular transport of secretory proteins in the pancreatic exocrine cell. II. Transport to condensing vacuoles and zymogen granules. J Cell Biol. 1967 Aug;34(2):597–615. doi: 10.1083/jcb.34.2.597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. KREBS H. A. Body size and tissue respiration. Biochim Biophys Acta. 1950 Jan;4(1-3):249–269. doi: 10.1016/0006-3002(50)90032-1. [DOI] [PubMed] [Google Scholar]
  30. Kemp R. B. The effect of neuraminidase (3:2:1:18) on the aggregation of cells dissociated from embryonic chick muscle tissue. J Cell Sci. 1970 May;6(3):751–766. doi: 10.1242/jcs.6.3.751. [DOI] [PubMed] [Google Scholar]
  31. Kono T. Destruction and restoration of the insulin effector system of isolated fat cells. J Biol Chem. 1969 Nov 10;244(21):5777–5784. [PubMed] [Google Scholar]
  32. Kraemer P. M. Regeneration of sialic acid on the surface of Chinese hamster cells in culture. I. General characteristics of the replacement process. J Cell Physiol. 1966 Aug;68(1):85–90. doi: 10.1002/jcp.1040680112. [DOI] [PubMed] [Google Scholar]
  33. Kudo C. F., Rubinstein D., McKenzie J. M., Beck J. C. Hormonal relase by dispersed pituitary cells. Can J Physiol Pharmacol. 1972 Sep;50(9):860–867. doi: 10.1139/y72-124. [DOI] [PubMed] [Google Scholar]
  34. LUFT J. H. Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol. 1961 Feb;9:409–414. doi: 10.1083/jcb.9.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Labrie F., Béraud G., Gauthier M., Lemay A. Actinomycin-insensitive stimulation of protein synthesis in rat anterior pituitary in vitro by dibutyryl adenosine 3',5'-monophosphate. J Biol Chem. 1971 Mar 25;246(6):1902–1908. [PubMed] [Google Scholar]
  36. Leavitt W. W., Kimmel G. L., Friend J. P. Steroid hormone uptake by anterior pituitary cell suspensions. Endocrinology. 1973 Jan;92(1):94–103. doi: 10.1210/endo-92-1-94. [DOI] [PubMed] [Google Scholar]
  37. Maayan M. L., Ingbar S. H. Epinephrine: effect on uptake of iodine by dispersed cells of calf thyroid gland. Science. 1968 Oct 4;162(3849):124–125. doi: 10.1126/science.162.3849.124. [DOI] [PubMed] [Google Scholar]
  38. MacLeod R. M., Fontham E. H. Influence of ionic environment on the in vitro synthesis and release of pituitary hormones. Endocrinology. 1970 Apr;86(4):863–869. doi: 10.1210/endo-86-4-863. [DOI] [PubMed] [Google Scholar]
  39. MacLeod R. M., Lehmeyer J. E. Release of pituitary growth hormone by prostaglandins and dibutyryl adenosine cyclic 3':5'-monophosphate in the absence of protein synthesis. Proc Natl Acad Sci U S A. 1970 Nov;67(3):1172–1179. doi: 10.1073/pnas.67.3.1172. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Malamed S., Portanova R., Sayers G., Craig J. W. Fine structure of trypsin-dissociated cells of the rat anterior pituitary gland. Proc Soc Exp Biol Med. 1971 Dec;138(3):920–926. doi: 10.3181/00379727-138-36019. [DOI] [PubMed] [Google Scholar]
  41. McQuiddy P., Lilien J. Sialic acid and cell aggregation. J Cell Sci. 1971 Nov;9(3):823–833. doi: 10.1242/jcs.9.3.823. [DOI] [PubMed] [Google Scholar]
  42. Meldolesi J., Marini D., Marini M. L. Studies on in vitro synthesis and secretion of growth hormone and prolactin. I. Hormone pulse labeling with radioactive leucine. Endocrinology. 1972 Sep;91(3):802–808. doi: 10.1210/endo-91-3-802. [DOI] [PubMed] [Google Scholar]
  43. Pelletier G., Lemay A., Beraud G., Labrie F. Ultrastructural changes accompanying the stimulatory effect of N6-monobutyryl adenosine 3',5'-monophosphate on the release of growth hormone(GH), prolactin (PRL) and adrenocorticotropic hormone (ACTH) in rat anterior pituitary gland in vitro. Endocrinology. 1972 Nov;91(5):1355–1371. doi: 10.1210/endo-91-5-1355. [DOI] [PubMed] [Google Scholar]
  44. Portanova R., Smith D. K., Sayers G. A trypsin technic for the preparation of isolated rat anterior pituitary cells. Proc Soc Exp Biol Med. 1970 Feb;133(2):573–576. doi: 10.3181/00379727-133-34520. [DOI] [PubMed] [Google Scholar]
  45. Poste G. Tissue dissociation with proteolytic enzymes. Adsorption and activity of enzymes at the cell surface. Exp Cell Res. 1971 Apr;65(2):359–367. doi: 10.1016/0014-4827(71)90014-0. [DOI] [PubMed] [Google Scholar]
  46. REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. RODBELL M. METABOLISM OF ISOLATED FAT CELLS. I. EFFECTS OF HORMONES ON GLUCOSE METABOLISM AND LIPOLYSIS. J Biol Chem. 1964 Feb;239:375–380. [PubMed] [Google Scholar]
  48. Racadot J., Olivier L., Porcile E., Droz B. Appareil de Golgi et origine des grains de sécrétion dans les cellules adénohypophysaires chez le rat. Etude radioautographique en microscopie électronique après injection de leucine tritiée. C R Acad Sci Hebd Seances Acad Sci D. 1965 Oct 11;261(15):2972–2974. [PubMed] [Google Scholar]
  49. Rosenthal J. W., Fain J. N. Insulin-like effect of clostridial phospholipase C, neuraminidase, and other bacterial factors on brown fat cells. J Biol Chem. 1971 Oct 10;246(19):5888–5895. [PubMed] [Google Scholar]
  50. STEINBERG M. S. "ECM": its nature, origin and function in cell aggregation. Exp Cell Res. 1963 Apr;30:257–279. doi: 10.1016/0014-4827(63)90299-4. [DOI] [PubMed] [Google Scholar]
  51. Samli M. H., Geschwind I. I. Some effects of energy-transfer inhibitors and of Ca++-free or K+-enhanced media on the release of luteinizing hormone (LH) from the rat pituitary gland in vitro. Endocrinology. 1968 Feb;82(2):225–231. doi: 10.1210/endo-82-2-225. [DOI] [PubMed] [Google Scholar]
  52. Samli M. H., Lai M. F., Barnett C. A. Protein synthesis in the rat anterior pituitary. II. Solubility studies on total protein, growth hormone and prolactin labeled in an in vitro incubation. Endocrinology. 1972 Jul;91(1):227–232. doi: 10.1210/endo-91-1-227. [DOI] [PubMed] [Google Scholar]
  53. Sayers G., Portanova R., Beall R. J., Seelig S., Malamed S. Techniques for the isolation of cells of the adrenal cortex, the anterior pituitary and the corpus luteum: morphological and functional evaluation of the isolated cells. Acta Endocrinol Suppl (Copenh) 1971;153:11–26. doi: 10.1530/acta.0.068s011. [DOI] [PubMed] [Google Scholar]
  54. Schofield J. G. Role of cyclic 3',5'-adenosine monophosphate in the release of growth hormone in vitro. Nature. 1967 Sep 23;215(5108):1382–1383. doi: 10.1038/2151382b0. [DOI] [PubMed] [Google Scholar]
  55. Schreiber G., Schreiber M. Protein synthesis in single cell suspensions from rat liver. I. General properties of the system and permeability of the cells for leucine and methionine. J Biol Chem. 1972 Oct 10;247(19):6340–6346. [PubMed] [Google Scholar]
  56. Schwartz B. D., Nathenson S. G. Regeneration of transplantation antigens on mouse cells. Transplant Proc. 1971 Mar;3(1):180–182. [PubMed] [Google Scholar]
  57. Swallow R. L., Sayers G. A technic for the preparation of isolated rat adrenal cells. Proc Soc Exp Biol Med. 1969 May;131(1):1–4. doi: 10.3181/00379727-131-33789. [DOI] [PubMed] [Google Scholar]
  58. TENNANT J. R. EVALUATION OF THE TRYPAN BLUE TECHNIQUE FOR DETERMINATION OF CELL VIABILITY. Transplantation. 1964 Nov;2:685–694. doi: 10.1097/00007890-196411000-00001. [DOI] [PubMed] [Google Scholar]
  59. Tixier-Vidal A., Picart R. Etude quantitative par radioautographie au microscope electronique de l'utilisation de la DL-leucine-3H par les cellules de l'hypophyse du canard en culture organotypiqe. J Cell Biol. 1967 Dec;35(3):501–519. doi: 10.1083/jcb.35.3.501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Vale W., Grant G., Amoss M., Blackwell R., Guillemin R. Culture of enzymatically dispersed pituitary cells: functional validation of a method. Endocrinology. 1972 Aug;91(2):562–572. doi: 10.1210/endo-91-2-562. [DOI] [PubMed] [Google Scholar]
  61. WEISS L. Sialic acid as a structural component of some mammalian tissue cell surfaces. Nature. 1961 Sep 9;191:1108–1109. doi: 10.1038/1911108b0. [DOI] [PubMed] [Google Scholar]
  62. Wallis C., Ver B., Melnick J. L. The role of serum and fetuin in the growth of monkey kidney cells in culture. Exp Cell Res. 1969 Dec;58(2):271–282. doi: 10.1016/0014-4827(69)90505-9. [DOI] [PubMed] [Google Scholar]
  63. ZAJAC I., CROWELL R. L. LOCATION AND REGENERATION OF ENTERIOVIRUS RECEPTORS OF HELA CELLS. J Bacteriol. 1965 Apr;89:1097–1100. doi: 10.1128/jb.89.4.1097-1100.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES