Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1973 Nov 1;59(2):480–490. doi: 10.1083/jcb.59.2.480

THE DEPRESSION OF PHAGOCYTOSIS BY EXOGENOUS CYCLIC NUCLEOTIDES, PROSTAGLANDINS, AND THEOPHYLLINE

Joyce P Cox 1, Manfred L Karnovsky 1
PMCID: PMC2109085  PMID: 4375683

Abstract

The effects of agents that elevate intracellular cyclic adenosine 3',5'-monophosphate (cAMP) have been studied with respect to phagocytosis by guinea pig polymorphonuclear leukocytes. The investigation depends upon the use of a precise method for following ingestion. Theophylline, dibutyryl cAMP, and prostaglandins inhibited the phagocytosis of starch particles. The inhibitions caused by prostaglandins E1, E2, and F (PGE1, PGE2, and PGF) were synergistic with that due to theophylline. Inhibition by PGA1 and PGA2 was not. At equal concentrations the order of increasing inhibition of phagocytosis (assayed at 10 min) by the prostaglandins was PGE1 < PGF < PGE2 < PGA1 = PGA2. Our results are consistent with the hypothesis that increased intracellular levels of cAMP impair the phagocyte's ability to ingest particles. The mechanism of the inhibition has not been defined. The increment in oxidation of [1-14C]glucose to 14CO2 that normally accompanies phagocytosis was found to be depressed in the presence of PGE1 or theophylline, together or individually as expected from the inhibition of phagocytosis. Paradoxically, oxygen consumption although depressed by theophylline or PGE1 plus theophylline, was stimulated by PGE1 alone.

Full Text

The Full Text of this article is available as a PDF (689.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bourne H. R., Lehrer R. I., Cline M. J., Melmon K. L. Cyclic 3',5'-adenosine monophosphate in the human lukocyte: synthesis, degradation, andeffects n neutrophil candidacidal activity. J Clin Invest. 1971 Apr;50(4):920–929. doi: 10.1172/JCI106564. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bourne H. R., Lehrer R. I., Lichtenstein L. M., Weissmann G., Zurier R. Effects of cholera enterotoxin on adenosine 3',5'-monophosphate and neutrophil function. Comparison with other compounds which stimulate leukocyte adenyl cyclase. J Clin Invest. 1973 Mar;52(3):698–708. doi: 10.1172/JCI107231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bourne H. R., Melmon K. L. Adenyl cyclase in human leukocytes: evidence for activation by separate beta adrenergic and prostaglandin receptors. J Pharmacol Exp Ther. 1971 Jul;178(1):1–7. [PubMed] [Google Scholar]
  4. CAGAN R. H., KARNOVSKY M. L. ENZYMATIC BASIS OF THE RESPIRATORY STIMULATION DURING PHAGOCYTOSIS. Nature. 1964 Oct 17;204:255–257. doi: 10.1038/204255a0. [DOI] [PubMed] [Google Scholar]
  5. COHN Z. A., MORSE S. I. Functional and metabolic properties of polymorphonuclear leucocytes. II. The influence of a lipopolysaccharide endotoxin. J Exp Med. 1960 May 1;111:689–704. doi: 10.1084/jem.111.5.689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ensor J. M., Munro D. S. A comparison of the in-vitro actions of thyroid-stimulating hormone and cyclic 3',5'-adenosine monophosphate on the mouse thyroid gland. J Endocrinol. 1969 Mar;43(3):477–485. doi: 10.1677/joe.0.0430477. [DOI] [PubMed] [Google Scholar]
  7. Fleischer N., Donald R. A., Butcher R. W. Involvement of adenosine 3',5'-monophosphate in release of ACTH. Am J Physiol. 1969 Nov;217(5):1287–1291. doi: 10.1152/ajplegacy.1969.217.5.1287. [DOI] [PubMed] [Google Scholar]
  8. Gagliardino J. J., Martin J. M. Stimulation of growth hormone secretion in monkeys by adrenalin, pitressin and adenosine-3'5'-cyclic monophosphoric acid (3'5'-AMP). Acta Endocrinol (Copenh) 1968 Nov;59(3):390–396. doi: 10.1530/acta.0.0590390. [DOI] [PubMed] [Google Scholar]
  9. Graham R. C., Jr, Karnovsky M. J., Shafer A. W., Glass E. A., Karnovsky M. L. Metabolic and morphological observations on the effect of surface-active agents of leukocytes. J Cell Biol. 1967 Mar;32(3):629–647. doi: 10.1083/jcb.32.3.629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Greengard P., Rudolph S. A., Sturtevant J. M. Enthalpy of hydrolysis of the 3' bond of adenosine 3',5'-monophosphate and guanosine 3',5'-monophosphate. J Biol Chem. 1969 Sep 10;244(17):4798–4800. [PubMed] [Google Scholar]
  11. Kowalski K., Babiarz D., Burke G. Phagocytosis of latex beads by isolated thyroid cells: effects of thyrotropin, prostaglandin E 1 , an dibutyryl cyclic AMP. J Lab Clin Med. 1972 Feb;79(2):258–266. [PubMed] [Google Scholar]
  12. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  13. Lichtenstein L. M., Margolis S. Histamine release in vitro: inhibition by catecholamines and methylxanthines. Science. 1968 Aug 30;161(3844):902–903. doi: 10.1126/science.161.3844.902. [DOI] [PubMed] [Google Scholar]
  14. Manganiello V., Evans W. H., Stossel T. P., Mason R. J., Vaughan M. The effect of polystyrene beads on cyclic 3',5'-adenosine monophosphate concentration in leukocytes. J Clin Invest. 1971 Dec;50(12):2741–2744. doi: 10.1172/JCI106775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. May C. D., Levine B. B., Weissmann G. Effects of compounds which inhibit antigenic release of histamine and phagocytic release of lysosomal enzyme on glucose utilization by leukocytes in humans. Proc Soc Exp Biol Med. 1970 Mar;133(3):758–763. doi: 10.3181/00379727-133-34559. [DOI] [PubMed] [Google Scholar]
  16. Michell R. H., Pancake S. J., Noseworthy J., Karnovsky M. L. Measurement of rates of phagocytosis: the use of cellular monolayers. J Cell Biol. 1969 Jan;40(1):216–224. doi: 10.1083/jcb.40.1.216. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. OREN R., FARNHAM A. E., SAITO K., MILOFSKY E., KARNOVSKY M. L. Metabolic patterns in three types of phagocytizing cells. J Cell Biol. 1963 Jun;17:487–501. doi: 10.1083/jcb.17.3.487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Park B. H., Good R. A., Beck N. P., Davis B. B. Concentration of cyclic adenosine 3',5'-monophosphate in human leucocytes during phagocytosis. Nat New Biol. 1971 Jan 6;229(1):27–29. doi: 10.1038/newbio229027a0. [DOI] [PubMed] [Google Scholar]
  19. SBARRA A. J., KARNOVSKY M. L. The biochemical basis of phagocytosis. I. Metabolic changes during the ingestion of particles by polymorphonuclear leukocytes. J Biol Chem. 1959 Jun;234(6):1355–1362. [PubMed] [Google Scholar]
  20. Scott R. E. Effects of prostaglandins, epinephrine and NaF on human leukocyte, platelet and liver adenyl cyclase. Blood. 1970 Apr;35(4):514–516. [PubMed] [Google Scholar]
  21. Smith J. W., Steiner A. L., Newberry W. M., Jr, Parker C. W. Cyclic adenosine 3',5'-monophosphate in human lymphocytes. Alterations after phytohemagglutinin stimulation. J Clin Invest. 1971 Feb;50(2):432–441. doi: 10.1172/JCI106510. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Smith J. W., Steiner A. L., Parker C. W. Human lymphocytic metabolism. Effects of cyclic and noncyclic nucleotides on stimulation by phytohemagglutinin. J Clin Invest. 1971 Feb;50(2):442–448. doi: 10.1172/JCI106511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Stolc V. Regulation of iodine metabolism in human leukocytes by adenosine 3',5' -monophosphate. Biochim Biophys Acta. 1972 Apr 21;264(2):285–288. doi: 10.1016/0304-4165(72)90292-9. [DOI] [PubMed] [Google Scholar]
  24. Stossel T. P., Mason R. J., Hartwig J., Vaughan M. Quantitative studies of phagocytosis by polymorphonuclear leukocytes: use of emulsions to measure the initial rate of phagocytosis. J Clin Invest. 1972 Mar;51(3):615–624. doi: 10.1172/JCI106851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Stossel T. P., Murad F., Mason R. J., Vaughan M. Regulation of glycogen metabolism in polymorphonuclear leukocytes. J Biol Chem. 1970 Nov 25;245(22):6228–6234. [PubMed] [Google Scholar]
  26. Sussman K. E., Vaughan G. D. Insulin release after ACTH, glucagon and adenosine-3'-5'-phosphate (cyclic AMP) in the perfused isolated rat pancreas. Diabetes. 1967 Jul;16(7):449–454. doi: 10.2337/diab.16.7.449. [DOI] [PubMed] [Google Scholar]
  27. Szabo M., Burke G. Uptake and metabolism of 3',5' -cyclic adenosine monophosphate and N 6 ,O 2' -dibutyryl 3',5' -cyclic adenosine monophosphate in isolated bovine thyroid cells. Biochim Biophys Acta. 1972 Apr 21;264(2):289–299. doi: 10.1016/0304-4165(72)90293-0. [DOI] [PubMed] [Google Scholar]
  28. Tsung P. K., Hermina N., Weissmann G. Inosine 3',5'-monophosphate and adenosine 3',5'-monophosphate-dependent protein kinase from human PMN leucocytes. Biochem Biophys Res Commun. 1972 Dec 18;49(6):1657–1662. doi: 10.1016/0006-291x(72)90533-5. [DOI] [PubMed] [Google Scholar]
  29. Walsh D. A., Krebs E. G., Reimann E. M., Brostrom M. A., Corbin J. D., Hickenbottom J. P., Soderling T. R., Perkins J. P. The receptor protein for cyclic AMP in the control of glycogenolysis. Adv Biochem Psychopharmacol. 1970;3:265–285. [PubMed] [Google Scholar]
  30. Weissmann G., Zurier R. B., Hoffstein S. Leukocytic proteases and the immunologic release of lysosomal enzymes. Am J Pathol. 1972 Sep;68(3):539–564. [PMC free article] [PubMed] [Google Scholar]
  31. Woodin A. M. Adenylate cyclase and the function of cyclic adenosine 3':5'-monophosphate in the leucocidin-treated leucocyte. Biochim Biophys Acta. 1972 Dec 29;286(2):406–415. doi: 10.1016/0304-4165(72)90277-2. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES