Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1973 Nov 1;59(2):346–360. doi: 10.1083/jcb.59.2.346

PRIMARY CULTURES OF DISSOCIATED SYMPATHETIC NEURONS

II. Initial Studies on Catecholamine Metabolism

Richard E Mains 1, Paul H Patterson 1
PMCID: PMC2109086  PMID: 4805003

Abstract

Initial studies are reported on the catecholamine metabolism of low-density cultures of dissociated primary sympathetic neurons. Radioactive tyrosine was used to study the synthesis and breakdown of catecholamines in the cultures. The dependence of catecholamine synthesis and accumulation on external tyrosine concentration was examined and a concentration which is near saturation, 30 µM, was chosen for further studies. The free tyrosine pool in the nerve cells equilibrated with extracellular tyrosine within 1 h; the total accumulation of tyrosine (free tyrosine plus protein, catecholamines, and metabolites) was linear for more than 24 h of incubation. Addition of biopterin, the cofactor of tyrosine hydroxylase, only slightly enhanced catecholamine biosynthesis by the cultured neurons. However, addition of reduced ascorbic acid, the cosubstrate for dopamine β-hydroxylase, markedly stimulated the conversion of dopamine (DA) to norepinephrine (NE). Phenylalanine, like tyrosine, served as a precursor for some of the DA and NE produced by the cultures, but tyrosine always accounted for more than 90% of the catecholamines produced. The DA pool labeled rapidly to a saturation level characteristic of the age of the culture. The NE pool filled more slowly and was much larger than the DA pool. The disappearance of radioactive NE and DA during chase experiments followed a simple exponential curve. Older cultures showed both more rapid production and more rapid turnover of the catecholamines than did younger cultures, suggesting a process of maturation.

Full Text

The Full Text of this article is available as a PDF (984.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anagnoste B., Freedman L. S., Goldstein M., Broome J., Fuxe K. Dopamine- -hydroxylase activity in mouse neuroblastoma tumors and in cell cultures. Proc Natl Acad Sci U S A. 1972 Jul;69(7):1883–1886. doi: 10.1073/pnas.69.7.1883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bhatnagar R. K., Moore K. E. Effects of electrical stimulation, -methyltyrosine and desmethylimipramine on the norepinephrine contents of neuronal cell bodies and terminals. J Pharmacol Exp Ther. 1971 Sep;178(3):450–463. [PubMed] [Google Scholar]
  3. Björklund A., Cegrell L., Falck B., Ritzén M., Rosengren E. Dopamine-containing cells in sympathetic ganglia. Acta Physiol Scand. 1970 Mar;78(3):334–338. doi: 10.1111/j.1748-1716.1970.tb04668.x. [DOI] [PubMed] [Google Scholar]
  4. Brodie B. B., Costa E., Dlabac A., Neff N. H., Smookler H. H. Application of steady state kinetics to the estimation of synthesis rate and turnover time of tissue catecholamines. J Pharmacol Exp Ther. 1966 Dec;154(3):493–498. [PubMed] [Google Scholar]
  5. Costa E., Green A. R., Koslow S. H., LeFevre H. F., Revuelta A. V., Wang C. Dopamine and norepinephrine in noradrenergic axons: a study in vivo of their precursor product relationship by mass fragmentography and radiochemistry. Pharmacol Rev. 1972 Jun;24(2):167–190. [PubMed] [Google Scholar]
  6. Craine J. E., Hall E. S., Kaufman S. The isolation and characterization of dihydropteridine reductase from sheep liver. J Biol Chem. 1972 Oct 10;247(19):6082–6091. [PubMed] [Google Scholar]
  7. Dahlström A., Häggendal J. Some quantitative studies on the noradrenaline content in the cell bodies and terminals of a sympathetic adrenergic neuron system. Acta Physiol Scand. 1966 Jul-Aug;67(3):271–277. doi: 10.1111/j.1748-1716.1966.tb03312.x. [DOI] [PubMed] [Google Scholar]
  8. EAGLE H. Amino acid metabolism in mammalian cell cultures. Science. 1959 Aug 21;130(3373):432–437. doi: 10.1126/science.130.3373.432. [DOI] [PubMed] [Google Scholar]
  9. EAGLE H., PIEZ K. A., FLEISCHMAN R. The utilization of phenylalanine and tyrosine for protein synthesis by human cells in tissue culture. J Biol Chem. 1957 Oct;228(2):847–861. [PubMed] [Google Scholar]
  10. EAGLE H. The specific amino acid requirements of a mammalian cell (strain L) in tissue culture. J Biol Chem. 1955 Jun;214(2):839–852. [PubMed] [Google Scholar]
  11. Friedman S., Kaufman S. 3,4-dihydroxyphenylethylamine beta-hydroxylase. Physical properties, copper content, and role of copper in the catalytic acttivity. J Biol Chem. 1965 Dec;240(12):4763–4773. [PubMed] [Google Scholar]
  12. Hall Z. W. Release of neurotransmitters and their interaction with receptors. Annu Rev Biochem. 1972;41:925–952. doi: 10.1146/annurev.bi.41.070172.004425. [DOI] [PubMed] [Google Scholar]
  13. Hedqvist P., Stjärne L. The relative role of recapture and of de novo synthesis for the maintenance of neurotransmitter homeostasis in noradrenergic nerves. Acta Physiol Scand. 1969 Jul;76(3):270–283. doi: 10.1111/j.1748-1716.1969.tb04470.x. [DOI] [PubMed] [Google Scholar]
  14. Iversen L. L., De Champlain J., Glowinski J., Axelrod J. Uptake, storage and metabolism of norepinephrine in tissues of the developing rat. J Pharmacol Exp Ther. 1967 Sep;157(3):509–516. [PubMed] [Google Scholar]
  15. Karobath M., Baldessarini R. J. Formation of catechol compounds from phenylalanine and tyrosine with isolated nerve endings. Nat New Biol. 1972 Apr 19;236(68):206–208. doi: 10.1038/newbio236206a0. [DOI] [PubMed] [Google Scholar]
  16. LEVIN E. Y., KAUFMAN S. Studies on the enzyme catalyzing the conversion of 3,4-dihydroxyphenylethylamine to norepinephrine. J Biol Chem. 1961 Jul;236:2043–2049. [PubMed] [Google Scholar]
  17. LEVITT M., SPECTOR S., SJOERDSMA A., UDENFRIEND S. ELUCIDATION OF THE RATE-LIMITING STEP IN NOREPINEPHRINE BIOSYNTHESIS IN THE PERFUSED GUINEA-PIG HEART. J Pharmacol Exp Ther. 1965 Apr;148:1–8. [PubMed] [Google Scholar]
  18. Levenson G. E. The effect of ascorbic acid on monolayer cultures of three types of chondrocytes. Exp Cell Res. 1969 May;55(2):225–228. doi: 10.1016/0014-4827(69)90484-4. [DOI] [PubMed] [Google Scholar]
  19. Lloyd T., Mori T., Kaufman S. 6-Methyltetrahydropterin. Isolation and identification as the highly active hydroxylase cofactor from tetrahydrofolate. Biochemistry. 1971 Jun 8;10(12):2330–2336. doi: 10.1021/bi00788a024. [DOI] [PubMed] [Google Scholar]
  20. MOHBERG J., JOHNSON M. J. STABILITY OF VITAMINS IN A CHEMICALLY DEFINED MEDIUM FOR 929-L FIBROBLASTS. J Natl Cancer Inst. 1963 Sep;31:603–610. [PubMed] [Google Scholar]
  21. Mains R. E., Patterson P. H. Primary cultures of dissociated sympathetic neurons. I. Establishment of long-term growth in culture and studies of differentiated properties. J Cell Biol. 1973 Nov;59(2 Pt 1):329–345. doi: 10.1083/jcb.59.2.329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Mains R. E., Patterson P. H. Primary cultures of dissociated sympathetic neurons. III. Changes in metabolism with age in culture. J Cell Biol. 1973 Nov;59(2 Pt 1):361–366. doi: 10.1083/jcb.59.2.361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Molinoff P. B., Axelrod J. Biochemistry of catecholamines. Annu Rev Biochem. 1971;40:465–500. doi: 10.1146/annurev.bi.40.070171.002341. [DOI] [PubMed] [Google Scholar]
  24. Musacchio J. M., D'Angelo G. L., McQueen C. A. Dihydropteridine reductase: implication on the regulation of catecholamine biosynthesis. Proc Natl Acad Sci U S A. 1971 Sep;68(9):2087–2091. doi: 10.1073/pnas.68.9.2087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Nagatsu T., Mizutani K., Nagatsu I., Matsuura S., Sugimoto T. Pteridines as cofactor or inhibitor of tyrosine hydroxylase. Biochem Pharmacol. 1972 Jul 15;21(14):1945–1953. doi: 10.1016/0006-2952(72)90007-x. [DOI] [PubMed] [Google Scholar]
  26. Nagatsu T., Sudo Y., Nagatsu I. Tyrosine hydroxylase in bovine caudate nucleus. J Neurochem. 1971 Nov;18(11):2179–2189. doi: 10.1111/j.1471-4159.1971.tb05076.x. [DOI] [PubMed] [Google Scholar]
  27. Norberg K. A., Ritzén M., Ungerstedt U. Histochemical studies on a special catecholamine-containing cell type in sympathetic ganglia. Acta Physiol Scand. 1966 Jul-Aug;67(3):260–270. doi: 10.1111/j.1748-1716.1966.tb03311.x. [DOI] [PubMed] [Google Scholar]
  28. PIEZ K. A., EAGLE H. The free amino acid pool of cultured human cells. J Biol Chem. 1958 Mar;231(1):533–545. [PubMed] [Google Scholar]
  29. Peterkofsky B. Regulation of collagen secretion by ascorbic acid in 3T3 and chick embryo fibroblasts. Biochem Biophys Res Commun. 1972 Dec 4;49(5):1343–1350. doi: 10.1016/0006-291x(72)90614-6. [DOI] [PubMed] [Google Scholar]
  30. Peterkofsky B. The effect of ascorbic acid on collagen polypeptide synthesis and proline hydroxylation during the growth of cultured fibroblasts. Arch Biochem Biophys. 1972 Sep;152(1):318–328. doi: 10.1016/0003-9861(72)90221-4. [DOI] [PubMed] [Google Scholar]
  31. ROE J. H. Chemical determination of ascorbic, dehydroascorbic, and diketogulonic acids. Methods Biochem Anal. 1954;1:115–139. doi: 10.1002/9780470110171.ch5. [DOI] [PubMed] [Google Scholar]
  32. Schubert D., Humphreys S., Baroni C., Cohn M. In vitro differentiation of a mouse neuroblastoma. Proc Natl Acad Sci U S A. 1969 Sep;64(1):316–323. doi: 10.1073/pnas.64.1.316. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sedvall G. C., Weise V. K., Kopin I. J. The rate of norepinephrine synthesis measured in vivo during short intervals; influence of adrenergic nerve impulse activity. J Pharmacol Exp Ther. 1968 Feb;159(2):274–282. [PubMed] [Google Scholar]
  34. Shiman R., Akino M., Kaufman S. Solubilization and partial purification of tyrosine hydroxylase from bovine adrenal medulla. J Biol Chem. 1971 Mar 10;246(5):1330–1340. [PubMed] [Google Scholar]
  35. Spector S., Tarver J., Berkowitz B. Effects of drugs and physiological factors in the disposition of catecholamines in blood vessels. Pharmacol Rev. 1972 Jun;24(2):191–202. [PubMed] [Google Scholar]
  36. Thoa N. B., Johnson D. G., Kopin I. J., Weiner N. Acceleration of catecholamine formation in the guinea-pig vas deferens after hypogastric nerve stimulation: roles of tyrosine hydroxylase and new protein synthesis. J Pharmacol Exp Ther. 1971 Sep;178(3):442–449. [PubMed] [Google Scholar]
  37. WOESSNER J. F., GOULD B. S. Collagen biosynthesis; tissue culture experiments to ascertain the role of ascorbic acid in collagen formation. J Biophys Biochem Cytol. 1957 Sep 25;3(5):685–695. doi: 10.1083/jcb.3.5.685. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES