Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1973 Nov 1;59(2):329–345. doi: 10.1083/jcb.59.2.329

PRIMARY CULTURES OF DISSOCIATED SYMPATHETIC NEURONS

I. Establishment of Long-Term Growth in Culture and Studies of Differentiated Properties

Richard E Mains 1, Paul H Patterson 1
PMCID: PMC2109089  PMID: 4616046

Abstract

Rat sympathetic ganglia were disrupted by mechanical agitation to yield dissociated primary neurons, and the conditions for long-term growth in culture of the isolated neurons were examined. The neurons were grown with or without non-neural cells, simply by the addition or deletion of bicarbonate during growth in culture. Fluorescence histochemistry indicated that the isolated neurons contained catecholamines; incubations with radioactive precursors were used to verify the synthesis and accumulation of both dopamine and norepinephrine. The neurons also produced octopamine using tyramine as precursor, but not with tyrosine as the precursor. In the presence of eserine, older cultures synthesized and stored small amounts of acetylcholine. The cultures did not synthesize and accumulate detectable levels of radioactive γ-aminobutyric acid, 5-hydroxytryptamine, or histamine.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Augusti-Tocco G., Sato G. Establishment of functional clonal lines of neurons from mouse neuroblastoma. Proc Natl Acad Sci U S A. 1969 Sep;64(1):311–315. doi: 10.1073/pnas.64.1.311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BORNSTEIN M. B. Reconstituted rattail collagen used as substrate for tissue cultures on coverslips in Maximow slides and roller tubes. Lab Invest. 1958 Mar-Apr;7(2):134–137. [PubMed] [Google Scholar]
  3. Bissell D. M., Tilles J. G. Morphology and function of cells of human embryonic liver in monolayer culture. J Cell Biol. 1971 Jul;50(1):222–231. doi: 10.1083/jcb.50.1.222. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Black I. B., Hendry I. A., Iversen L. L. Effects of surgical decentralization and nerve growth factor on the maturation of adrenergic neurons in a mouse sympathetic ganglion. J Neurochem. 1972 May;19(5):1367–1377. doi: 10.1111/j.1471-4159.1972.tb01461.x. [DOI] [PubMed] [Google Scholar]
  5. Bocchini V., Angeletti P. U. The nerve growth factor: purification as a 30,000-molecular-weight protein. Proc Natl Acad Sci U S A. 1969 Oct;64(2):787–794. doi: 10.1073/pnas.64.2.787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brandau K., Axelrod J. The biosynthesis of octopamine. Naunyn Schmiedebergs Arch Pharmacol. 1972;273(1):123–133. doi: 10.1007/BF00508085. [DOI] [PubMed] [Google Scholar]
  7. Bray D. Surface movements during the growth of single explanted neurons. Proc Natl Acad Sci U S A. 1970 Apr;65(4):905–910. doi: 10.1073/pnas.65.4.905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Brodie B. B., Costa E., Dlabac A., Neff N. H., Smookler H. H. Application of steady state kinetics to the estimation of synthesis rate and turnover time of tissue catecholamines. J Pharmacol Exp Ther. 1966 Dec;154(3):493–498. [PubMed] [Google Scholar]
  9. Brown G. L., Feldberg W. The action of potassium on the superior cervical ganglion of the cat. J Physiol. 1936 Mar 9;86(3):290–305. doi: 10.1113/jphysiol.1936.sp003364. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Bunge M. B. Fine structure of nerve fibers and growth cones of isolated sympathetic neurons in culture. J Cell Biol. 1973 Mar;56(3):713–735. doi: 10.1083/jcb.56.3.713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dahlström A., Häggendal J. Some quantitative studies on the noradrenaline content in the cell bodies and terminals of a sympathetic adrenergic neuron system. Acta Physiol Scand. 1966 Jul-Aug;67(3):271–277. doi: 10.1111/j.1748-1716.1966.tb03312.x. [DOI] [PubMed] [Google Scholar]
  12. EAGLE H. Amino acid metabolism in mammalian cell cultures. Science. 1959 Aug 21;130(3373):432–437. doi: 10.1126/science.130.3373.432. [DOI] [PubMed] [Google Scholar]
  13. Eränkö L. Ultrastructure of the developing sympathetic nerve cell and the storage of catecholamines. Brain Res. 1972 Nov 13;46:159–175. doi: 10.1016/0006-8993(72)90013-3. [DOI] [PubMed] [Google Scholar]
  14. Fischbach G. D. Synapse formation between dissociated nerve and muscle cells in low density cell cultures. Dev Biol. 1972 Jun;28(2):407–429. doi: 10.1016/0012-1606(72)90023-1. [DOI] [PubMed] [Google Scholar]
  15. GIACOBINI E. Localization of carbonic anhydrase in the nervous system. Science. 1961 Nov 10;134(3489):1524–1525. doi: 10.1126/science.134.3489.1524. [DOI] [PubMed] [Google Scholar]
  16. Hildebrand J. G., Barker D. L., Herbert E., Kravitz E. A. Screening for neurotransmitters: a rapid radiochemical procedure. J Neurobiol. 1971;2(3):231–246. doi: 10.1002/neu.480020305. [DOI] [PubMed] [Google Scholar]
  17. Hámori J., Láng E., Simon L. Experimental degeneration of the preganglionic fibers in the superior cervical ganglion of the cat. An electron microscope study. Z Zellforsch Mikrosk Anat. 1968;90(1):37–52. doi: 10.1007/BF00496701. [DOI] [PubMed] [Google Scholar]
  18. Jacobowitz D. Catecholamine fluorescence studies of adrenergic neurons and chromaffin cells in sympathetic ganglia. Fed Proc. 1970 Nov-Dec;29(6):1929–1944. [PubMed] [Google Scholar]
  19. KOPIN I. J., FISCHER J. E., MUSACCHIO J. M., HORST W. D., WEISE V. K. "FALSE NEUROCHEMICAL TRANSMITTERS" AND THE MECHANISM OF SYMPATHETIC BLOCKADE BY MONOAMINE OXIDASE INHIBITORS. J Pharmacol Exp Ther. 1965 Feb;147:186–193. [PubMed] [Google Scholar]
  20. Lam D. M. The biosynthesis and content of gamma-aminobutyric acid in the goldifsh retina. J Cell Biol. 1972 Aug;54(2):225–231. doi: 10.1083/jcb.54.2.225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Larrabee M. G. Metabolism of adult and embryonic sympathetic ganglia. Fed Proc. 1970 Nov-Dec;29(6):1919–1928. [PubMed] [Google Scholar]
  22. Levitt M., Gibb J. W., Daly J. W., Lipton M., Udenfriend S. A new class of tyrosine hydroxylase inhibitors and a simple assay of inhibition in vivo. Biochem Pharmacol. 1967 Jul 7;16(7):1313–1321. doi: 10.1016/0006-2952(67)90162-1. [DOI] [PubMed] [Google Scholar]
  23. Mains R. E., Patterson P. H. Primary cultures of dissociated sympathetic neurons. II. Initial studies on catecholamine metabolism. J Cell Biol. 1973 Nov;59(2 Pt 1):346–360. doi: 10.1083/jcb.59.2.346. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Mains R. E., Patterson P. H. Primary cultures of dissociated sympathetic neurons. III. Changes in metabolism with age in culture. J Cell Biol. 1973 Nov;59(2 Pt 1):361–366. doi: 10.1083/jcb.59.2.361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Matthews M. R., Raisman G. A light and electron microscopic study of the cellular response to axonal injury in the superior cervical ganglion of the rat. Proc R Soc Lond B Biol Sci. 1972 Apr 18;181(1062):43–79. doi: 10.1098/rspb.1972.0040. [DOI] [PubMed] [Google Scholar]
  26. McMahan U. J., Kuffler S. W. Visual identification of synaptic boutons on living ganglion cells and of varicosities in postganglionic axons in the heart of the frog. Proc R Soc Lond B Biol Sci. 1971 Apr 27;177(1049):485–508. doi: 10.1098/rspb.1971.0044. [DOI] [PubMed] [Google Scholar]
  27. Miller R., Varon S., Kruger L., Coates P. W., Orkand P. M. Formation of synaptic contacts on dissociated chick embryo sensory ganglion cells in vitro. Brain Res. 1970 Dec 1;24(2):356–358. doi: 10.1016/0006-8993(70)90119-8. [DOI] [PubMed] [Google Scholar]
  28. Molinoff P. B., Axelrod J. Biochemistry of catecholamines. Annu Rev Biochem. 1971;40:465–500. doi: 10.1146/annurev.bi.40.070171.002341. [DOI] [PubMed] [Google Scholar]
  29. Molinoff P. B., Axelrod J. Distribution and turnover of octopamine in tissues. J Neurochem. 1972 Jan;19(1):157–163. doi: 10.1111/j.1471-4159.1972.tb01265.x. [DOI] [PubMed] [Google Scholar]
  30. Molinoff P. B., Kravitz E. A. The metabolism of gamma-aminobutyric acid (GABA) in the lobster nervous system--glutamic decarboxylase. J Neurochem. 1968 May;15(5):391–409. doi: 10.1111/j.1471-4159.1968.tb11626.x. [DOI] [PubMed] [Google Scholar]
  31. Nagle S. C., Jr, Brown B. L. An improved heat-stable glutamine-free chemically defined medium for growth of mammalian cells. J Cell Physiol. 1971 Apr;77(2):259–263. doi: 10.1002/jcp.1040770214. [DOI] [PubMed] [Google Scholar]
  32. Okarma T. B., Kalman S. M. Photoelectric monitoring of single beating heart cells in culture. Exp Cell Res. 1971 Nov;69(1):128–134. doi: 10.1016/0014-4827(71)90318-1. [DOI] [PubMed] [Google Scholar]
  33. Okun L. M. Isolated dorsal root ganglion neurons in culture: cytological maturation and extension of electrically active processes. J Neurobiol. 1972;3(2):111–151. doi: 10.1002/neu.480030203. [DOI] [PubMed] [Google Scholar]
  34. Otsuka M., Obata K., Miyata Y., Tanaka Y. Measurement of gamma-aminobutyric acid in isolated nerve cells of cat central nervous system. J Neurochem. 1971 Feb;18(2):287–295. doi: 10.1111/j.1471-4159.1971.tb00567.x. [DOI] [PubMed] [Google Scholar]
  35. Paul D., Lipton A., Klinger I. Serum factor requirements of normal and simian virus 40-transformed 3T3 mouse fibroplasts. Proc Natl Acad Sci U S A. 1971 Mar;68(3):645–652. doi: 10.1073/pnas.68.3.645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Potter L. T. Synthesis, storage and release of [14C]acetylcholine in isolated rat diaphragm muscles. J Physiol. 1970 Jan;206(1):145–166. doi: 10.1113/jphysiol.1970.sp009003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Sato G., Augusti-Tocco G., Posner M. Hormone-secreting and hormone-responsive cell cultures. Recent Prog Horm Res. 1970;26:539–546. doi: 10.1016/b978-0-12-571126-5.50017-0. [DOI] [PubMed] [Google Scholar]
  38. Schubert D., Humphreys S., Baroni C., Cohn M. In vitro differentiation of a mouse neuroblastoma. Proc Natl Acad Sci U S A. 1969 Sep;64(1):316–323. doi: 10.1073/pnas.64.1.316. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Scott B. S., Engelbert V. E., Fisher K. C. Morphological and electrophysiological characteristics of dissociated chick embryonic spinal ganglion cells in culture. Exp Neurol. 1969 Feb;23(2):230–248. doi: 10.1016/0014-4886(69)90060-0. [DOI] [PubMed] [Google Scholar]
  40. UVNAS B. Sympathetic vasodilator outflow. Physiol Rev. 1954 Jul;34(3):608–618. doi: 10.1152/physrev.1954.34.3.608. [DOI] [PubMed] [Google Scholar]
  41. Varon S., Nomura J., Shooter E. M. The isolation of the mouse nerve growth factor protein in a high molecular weight form. Biochemistry. 1967 Jul;6(7):2202–2209. doi: 10.1021/bi00859a043. [DOI] [PubMed] [Google Scholar]
  42. Varon S., Raiborn C. W., Jr Dissociation, fractionation, and culture of embryonic brain cells. Brain Res. 1969 Jan;12(1):180–199. doi: 10.1016/0006-8993(69)90065-1. [DOI] [PubMed] [Google Scholar]
  43. WOOD G. C., KEECH M. K. The formation of fibrils from collagen solutions. 1. The effect of experimental conditions: kinetic and electron-microscope studies. Biochem J. 1960 Jun;75:588–598. doi: 10.1042/bj0750588. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Yaffe D. Cellular aspects of muscle differentiation in vitro. Curr Top Dev Biol. 1969;4:37–77. doi: 10.1016/s0070-2153(08)60480-9. [DOI] [PubMed] [Google Scholar]
  45. Yamasaki Y., Natori Y. Sex difference in the liver and plasma free amino acid concentrations in rats. J Biochem. 1972 Aug;72(2):491–493. doi: 10.1093/oxfordjournals.jbchem.a129927. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES