Abstract
The effect of various antimetabolites on nuclear pore formation was studied in synchronized HeLa S3 cells. The nuclear size was determined by light microscopy and the pore number per unit area of nuclear surface by the freeze-etching technique and electron microscopy. It was found that the inhibition of DNA replication or ribosomal RNA synthesis has no effect on nuclear size increase or pore formation. However, the inhibition of ATP synthesis effectively stops nuclear pore formation. Cycloheximide blocks nuclear pore formation at the same time during G1 phase of the cell cycle when nuclear size increase is blocked by high concentrations of actinomycin D. This suggests that certain proteins or other factors leading to pore formation and nuclear size increase are transcribed and synthesized at about 3–4 h after mitosis, i.e., about 1–2 h before S phase begins.
Full Text
The Full Text of this article is available as a PDF (594.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amaldi F., Carnevali F., Leoni L., Mariotti D. Replicon origins in Chinese hamsters cell DNA. I. Labeling procedure and preliminary observations. Exp Cell Res. 1972 Oct;74(2):367–374. doi: 10.1016/0014-4827(72)90389-8. [DOI] [PubMed] [Google Scholar]
- BOOTSMA D., BUDKE L., VOS O. STUDIES ON SYNCHRONOUS DIVISION OF TISSUE CULTURE CELLS INITIATED BY EXCESS THYMIDINE. Exp Cell Res. 1964 Jan;33:301–309. doi: 10.1016/s0014-4827(64)81035-1. [DOI] [PubMed] [Google Scholar]
- Baserga R., Estensen R. D., Petersen R. O. Inhibition of DNA synthesis in Ehrlich ascites cells by actinomycin D. II. The presynthetic block in the cell cycle. Proc Natl Acad Sci U S A. 1965 Oct;54(4):1141–1148. doi: 10.1073/pnas.54.4.1141. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FELDHERR C. M. The nuclear annuli as pathways for nucleocytoplasmic exchanges. J Cell Biol. 1962 Jul;14:65–72. doi: 10.1083/jcb.14.1.65. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Franke W. W., Scheer U., Fritsch H. Intranuclear and cytoplasmic annulate lamellae in plant cells. J Cell Biol. 1972 Jun;53(3):823–827. doi: 10.1083/jcb.53.3.823. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Highfield D. P., Dewey W. C. Inhibition of DNA synthesis in synchronized Chinese hamster cells treated in G1 or early S phase with cycloheximide or puromycin. Exp Cell Res. 1972 Dec;75(2):314–320. doi: 10.1016/0014-4827(72)90435-1. [DOI] [PubMed] [Google Scholar]
- Horowitz S. B. The permeability of the amphibian oocyte nucleus, in situ. J Cell Biol. 1972 Sep;54(3):609–625. doi: 10.1083/jcb.54.3.609. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jamieson J. D., Palade G. E. Intracellular transport of secretory proteins in the pancreatic exocrine cell. IV. Metabolic requirements. J Cell Biol. 1968 Dec;39(3):589–603. doi: 10.1083/jcb.39.3.589. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LIEBERMAN I., ABRAMS R., OVE P. Changes in the metabolism of ribonucleic acid preceding the synthesis of deoxyribonucleic acid in mammalian cells cultured from the animal. J Biol Chem. 1963 Jun;238:2141–2149. [PubMed] [Google Scholar]
- Maul G. G., Maul H. M., Scogna J. E., Lieberman M. W., Stein G. S., Hsu B. Y., Borun T. W. Time sequence of nuclear pore formation in phytohemagglutinin-stimulated lymphocytes and in HeLa cells during the cell cycle. J Cell Biol. 1972 Nov;55(2):433–447. doi: 10.1083/jcb.55.2.433. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maul G. G. On the relationship between the Golgi apparatus and annulate lamellae. J Ultrastruct Res. 1970 Feb;30(3):368–384. doi: 10.1016/s0022-5320(70)80069-7. [DOI] [PubMed] [Google Scholar]
- Maul G. G., Price J. W., Lieberman M. W. Formation and distribution of nuclear pore complexes in interphase. J Cell Biol. 1971 Nov;51(21):405–418. doi: 10.1083/jcb.51.2.405. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maul G. G. The presence of intranuclear annulate lamellae shortly after mitosis in human melanoma cells in vitro. J Ultrastruct Res. 1970 May;31(3):375–380. doi: 10.1016/s0022-5320(70)90139-5. [DOI] [PubMed] [Google Scholar]
- Maul G. G. Ultrastructure of pore complexes of annulate lamellae. J Cell Biol. 1970 Sep;46(3):604–610. doi: 10.1083/jcb.46.3.604. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ROBBINS E., MARCUS P. I. MITOTICALLY SYNCHRONIZED MAMMALIAN CELLS: A SIMPLE METHOD FOR OBTAINING LARGE POPULATIONS. Science. 1964 May 29;144(3622):1152–1153. doi: 10.1126/science.144.3622.1152. [DOI] [PubMed] [Google Scholar]
- Scheer U. Ultrastructure of the nuclear envelope of amphibian oocytes. IV. Chemical nature of the nuclear pore complex material. Z Zellforsch Mikrosk Anat. 1972;127(1):127–148. doi: 10.1007/BF00582762. [DOI] [PubMed] [Google Scholar]
- Stein G. S., Borun T. W. The synthesis of acidic chromosomal proteins during the cell cycle of HeLa S-3 cells. I. The accelerated accumulation of acidic residual nuclear protein before the initiation of DNA replication. J Cell Biol. 1972 Feb;52(2):292–307. doi: 10.1083/jcb.52.2.292. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stein G., Baserga R. Nuclear proteins and the cell cycle. Adv Cancer Res. 1972;15:287–330. doi: 10.1016/s0065-230x(08)60378-4. [DOI] [PubMed] [Google Scholar]
- TERASIMA T., TOLMACH L. J. Growth and nucleic acid synthesis in synchronously dividing populations of HeLa cells. Exp Cell Res. 1963 Apr;30:344–362. doi: 10.1016/0014-4827(63)90306-9. [DOI] [PubMed] [Google Scholar]
- Teng C. S., Hamilton T. H. Role of chromatin in estrogen action in the uterus. II. Hormone-induced synthesis of nonhistone acidic proteins which restore histone-inhibited DNA-dependent RNA synthesis. Proc Natl Acad Sci U S A. 1969 Jun;63(2):465–472. doi: 10.1073/pnas.63.2.465. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tobey R. A., Crissman H. A. Preparation of large quantities of synchronized mammalian cells in late G1 in the pre-DNA replicative phase of the cell cycle. Exp Cell Res. 1972 Dec;75(2):460–464. doi: 10.1016/0014-4827(72)90453-3. [DOI] [PubMed] [Google Scholar]
- XEROS N. Deoxyriboside control and synchronization of mitosis. Nature. 1962 May 19;194:682–683. doi: 10.1038/194682a0. [DOI] [PubMed] [Google Scholar]