Abstract
Ribosomes of all eukaryotes contain a single molecule of 5S, 18S, and 28S RNA. In the frog Xenopus laevis the genes which code for 18S and 28S RNA are located in the nucleolar organizer, but these genes are not linked to the 5S RNA genes. Therefore the synthesis of the three ribosomal RNAs provides a model system for studying interchromosomal aspects of gene regulation. In order to determine if the synthesis of the three ribosomal RNAs are interdependent, the relative rate of 5S RNA synthesis was measured in anucleolate mutants (o/o), which do not synthesize any 18S or 28S RNA, and in partial nucleolate mutants (p l-1/o), which synthesize 18S and 28S RNA at 25% of the normal rate. Since the o/o and p l-1/o mutants have a complete and partial deletion of 18S and 28S RNA genes respectively, but the normal number of 5S RNA genes, they provide a unique system in which to study the dependence of 5S RNA synthesis on the synthesis of 18S and 28S RNA. Total RNA was extracted from embryos labeled during different stages of development and analyzed by polyacrylamide gel electrophoresis. Quite unexpectedly it was found that 5S RNA synthesis in o/o and p l-1/o mutants proceeds at the same rate as it does in normal embryos. Furthermore, 5S RNA synthesis is initiated normally at gastrulation in o/o mutants in the complete absence of 18S and 28S RNA synthesis.
Full Text
The Full Text of this article is available as a PDF (487.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aloni Y., Hatlen L. E., Attardi G. Studies of fractionated HeLa cell metaphase chromosomes. II. chromosomal distribution of sites for transfer RNA and 5 s RNA. J Mol Biol. 1971 Mar 28;56(3):555–563. doi: 10.1016/0022-2836(71)90401-3. [DOI] [PubMed] [Google Scholar]
- BARTH L. G., BARTH L. J. Differentiation of cells of the Rana pipiens gastrula in unconditioned medium. J Embryol Exp Morphol. 1959 Jun;7:210–222. [PubMed] [Google Scholar]
- BROWN D. D., GURDON J. B. ABSENCE OF RIBOSOMAL RNA SYNTHESIS IN THE ANUCLEOLATE MUTANT OF XENOPUS LAEVIS. Proc Natl Acad Sci U S A. 1964 Jan;51:139–146. doi: 10.1073/pnas.51.1.139. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BROWN D. D., LITTNA E. RNA SYNTHESIS DURING THE DEVELOPMENT OF XENOPUS LAEVIS, THE SOUTH AFRICAN CLAWED TOAD. J Mol Biol. 1964 May;8:669–687. doi: 10.1016/s0022-2836(64)80116-9. [DOI] [PubMed] [Google Scholar]
- Birnstiel M. L., Chipchase M., Speirs J. The ribosomal RNA cistrons. Prog Nucleic Acid Res Mol Biol. 1971;11:351–389. doi: 10.1016/s0079-6603(08)60332-3. [DOI] [PubMed] [Google Scholar]
- Brown D. D., Littna E. Synthesis and accumulation of low molecular weight RNA during embryogenesis of Xenopus laevis. J Mol Biol. 1966 Sep;20(1):95–112. doi: 10.1016/0022-2836(66)90120-3. [DOI] [PubMed] [Google Scholar]
- Colli W., Smith I., Oishi M. Physical linkage between 5 s, 16 s and 23 s ribosomal RNA genes in Bacillus subtilis. J Mol Biol. 1971 Feb 28;56(1):117–127. doi: 10.1016/0022-2836(71)90088-x. [DOI] [PubMed] [Google Scholar]
- Davies J., Nomura M. The genetics of bacterial ribosomes. Annu Rev Genet. 1972;6:203–234. doi: 10.1146/annurev.ge.06.120172.001223. [DOI] [PubMed] [Google Scholar]
- ELSDALE T. R., FISCHBERG M., SMITH S. A mutation that reduces nucleolar number in Xenopus laevis. Exp Cell Res. 1958 Jun;14(3):642–643. doi: 10.1016/0014-4827(58)90175-7. [DOI] [PubMed] [Google Scholar]
- Ford P. J. Non-coordinated accumulation and synthesis of 5S ribonucleic acid by ovaries of Xenopus laevis. Nature. 1971 Oct 22;233(5321):561–564. doi: 10.1038/233561a0. [DOI] [PubMed] [Google Scholar]
- Ford P. J., Southern E. M. Different sequences for 5S RNA in kidney cells and ovaries of Xenopus laevis. Nat New Biol. 1973 Jan 3;241(105):7–12. doi: 10.1038/newbio241007a0. [DOI] [PubMed] [Google Scholar]
- Galibert F., Tiollais P., Sanfourche F., Boiron M. Coordination de la transcription des RNA 5 S et 23 S et coordination de la maturation du RNA 5S et de la sous-unité ribosomique 50 S chez Escherichia coli. Eur J Biochem. 1971 Jun 11;20(3):381–391. doi: 10.1111/j.1432-1033.1971.tb01404.x. [DOI] [PubMed] [Google Scholar]
- Hill R. N., McConkey E. H. Coordination of ribosomal RNA synthesis in vertebrate cells. J Cell Physiol. 1972 Feb;79(1):15–26. doi: 10.1002/jcp.1040790103. [DOI] [PubMed] [Google Scholar]
- Knight E., Jr, Darnell J. E. Distribution of 5 s RNA in HeLa cells. J Mol Biol. 1967 Sep 28;28(3):491–502. doi: 10.1016/s0022-2836(67)80099-8. [DOI] [PubMed] [Google Scholar]
- Knowland J. S. Polyacrylamide gel electrophoresis of nucleic acids synthesised during the early development of Xenopus laevis Daudin. Biochim Biophys Acta. 1970 Apr 15;204(2):416–429. doi: 10.1016/0005-2787(70)90162-0. [DOI] [PubMed] [Google Scholar]
- Leibowitz R. D., Weinberg R. A., Penman S. Unusual metabolism of 5 S RNA in HeLa cells. J Mol Biol. 1973 Jan;73(1):139–144. doi: 10.1016/0022-2836(73)90166-6. [DOI] [PubMed] [Google Scholar]
- Loening U. E. The determination of the molecular weight of ribonucleic acid by polyacrylamide-gel electrophresis. The effects of changes in conformation. Biochem J. 1969 Jun;113(1):131–138. doi: 10.1042/bj1130131. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mairy M., Denis H. Recherches biochimiques sur l'oogenèse. I. Synthèse et accumulation du RNA pendant l'oogenèse du crapaud sud-africain Xenopus laevis. Dev Biol. 1971 Feb;24(2):143–165. doi: 10.1016/0012-1606(71)90092-3. [DOI] [PubMed] [Google Scholar]
- Miller L., Gurdon J. B. Mutations affecting the size of the nucleolus in Xenopus laevis. Nature. 1970 Sep 12;227(5263):1108–1110. doi: 10.1038/2271108a0. [DOI] [PubMed] [Google Scholar]
- Miller L., Knowland J. Reduction of ribosomal RNA synthesis and ribosomal RNA genes in a mutant of Xenopus laevis which organizes only a partial nucleolus. II. The number of ribosomal RNA genes in animals of different nucleolar types. J Mol Biol. 1970 Nov 14;53(3):329–338. doi: 10.1016/0022-2836(70)90069-0. [DOI] [PubMed] [Google Scholar]
- Miller L., Knowland J. The number and activity of ribosomal RNA genes in Xenopus laevis embryos carrying partial deletions in both nucleolar organizers. Biochem Genet. 1972 Feb;6(1):65–73. doi: 10.1007/BF00485967. [DOI] [PubMed] [Google Scholar]
- Pardue M. L., Brown D. D., Birnstiel M. L. Location of the genes for 5S ribosomal RNA in Xenopus laevis. Chromosoma. 1973;42(2):191–203. doi: 10.1007/BF00320940. [DOI] [PubMed] [Google Scholar]
- Perry R. P., Kelley D. E. Persistent synthesis of 5S RNA when production of 28S and 18S ribosomal RNA is inhibited by low doses of actinomycin D. J Cell Physiol. 1968 Dec;72(3):235–246. doi: 10.1002/jcp.1040720311. [DOI] [PubMed] [Google Scholar]
- Rosbash M., Penman S. The precipitation of precursor tRNA in high salt. Biochem Biophys Res Commun. 1972 Feb 16;46(3):1469–1475. doi: 10.1016/s0006-291x(72)80142-6. [DOI] [PubMed] [Google Scholar]
- Weinmann R. Regulation of ribosomal RNA and 5s RNA synthesis in Drosophila melanogaster. I. Bobbed mutants. Genetics. 1972 Oct;72(2):267–276. doi: 10.1093/genetics/72.2.267. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wimber D. E., Steffensen D. M. Localization of 5S RNA genes on Drosophila chromosomes by RNA-DNA hybridization. Science. 1970 Nov 6;170(3958):639–641. doi: 10.1126/science.170.3958.639. [DOI] [PubMed] [Google Scholar]
- Zehavi-Willner T., Danon D. The isolation and properties of reticulocyte soluble 5 S RNA. FEBS Lett. 1972 Oct 1;26(1):151–156. doi: 10.1016/0014-5793(72)80562-3. [DOI] [PubMed] [Google Scholar]
- Zylber E. A., Penman S. Synthesis of 5S and 4S RNA in metaphase-arrested HeLa cells. Science. 1971 May 28;172(3986):947–949. doi: 10.1126/science.172.3986.947. [DOI] [PubMed] [Google Scholar]