Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1974 Jan 1;60(1):78–91. doi: 10.1083/jcb.60.1.78

A FINE STRUCTURAL INVESTIGATION OF SURFACE SPECIALIZATIONS AND THE CORTICAL REACTION IN EGGS OF THE CNIDARIAN BUNODOSOMA CAVERNATA

William C Dewel 1, Wallis H Clark Jr 1
PMCID: PMC2109133  PMID: 4129078

Abstract

Developing oocytes of the cnidarian Bunodosoma cavernata are located within the mesoglea of the mesenteries of the gastrovascular cavity. The cortex of the more mature vitellogenic oocytes contains numerous, electron-dense, membrane-bound, cortical granules. The surface of these oocytes possesses prominent radially projecting structures termed cytospines. Each cytospine has a core of microfilaments, 50–70 Å in diameter, that extends basally as a rootlet through the cortical layer. During spawning, ova lacking any extraneous investments are released from the enclosing gastrodermis. As a consequence of fertilization or events associated with the earliest stages of development the ova undergo a massive cortical reaction. This reaction, which occurs during or just after release of the ova, involves extensive reorganization of the cortical layer. The cortical granule membranes and egg surface membrane fuse and vesiculate resulting in the massive discharge of granule contents. This event is accompanied by the loss of vesicular remnants of cortical ooplasm and the disruption of cytospine organization. Light and electron microscope comparisons of unreacted and reacted eggs show that the reaction results in a significant decrease in egg diameter with the oolemma of the reacted egg reorganizing in a position centripetal to its original location.

Full Text

The Full Text of this article is available as a PDF (1.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AFZELIUS B. A. The ultrastructure of the cortical granules and their products in the sea urchin egg as studied with the electron microscope. Exp Cell Res. 1956 Apr;10(2):257–285. doi: 10.1016/0014-4827(56)90001-5. [DOI] [PubMed] [Google Scholar]
  2. Afzelius B. A. Fine structure of the spermatozoon of Tubularia larynx (Hydrozoa, Coelenterata). J Ultrastruct Res. 1971 Dec;37(5):679–689. doi: 10.1016/s0022-5320(71)80031-x. [DOI] [PubMed] [Google Scholar]
  3. Afzelius B. A., Franzén A. The spermatozoon of the jellyfish Nausithoë. J Ultrastruct Res. 1971 Oct;37(1):186–199. doi: 10.1016/s0022-5320(71)80050-3. [DOI] [PubMed] [Google Scholar]
  4. Anderson E. Oocyte differentiation in the sea urchin, Arbacia punctulata, with particular reference to the origin of cortical granules and their participation in the cortical reaction. J Cell Biol. 1968 May;37(2):514–539. doi: 10.1083/jcb.37.2.514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Barros C., Bedford J. M., Franklin L. E., Austin C. R. Membrane vesiculation as a feature of the mammalian acrosome reaction. J Cell Biol. 1967 Sep;34(3):C1–C5. doi: 10.1083/jcb.34.3.c1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Barros C., Yanagimachi R. Induction of zona reaction in golden hamster eggs by cortical granule material. Nature. 1971 Sep 24;233(5317):268–269. doi: 10.1038/233268a0. [DOI] [PubMed] [Google Scholar]
  7. Chia F. S., Spaulding J. G. Development and juvenile growth of the sea anemone, Tealia crassicornis. Biol Bull. 1972 Apr;142(2):206–218. doi: 10.2307/1540225. [DOI] [PubMed] [Google Scholar]
  8. Dewel W. C., Clark W. H., Jr An ultrastructural investigation of spermiogenesis and the mature sperm in the anthozoan Bunodosoma cavernata (Cnidaria). J Ultrastruct Res. 1972 Aug;40(3):417–431. doi: 10.1016/s0022-5320(72)90111-6. [DOI] [PubMed] [Google Scholar]
  9. Fallon J. F., Austin C. R. Fine structure of gametes of Nereis limbata (Annelida) before and after interaction. J Exp Zool. 1967 Nov;166(2):225–241. doi: 10.1002/jez.1401660205. [DOI] [PubMed] [Google Scholar]
  10. Hinsch G. W., Clark W. H., Jr Comparative fine structure of Cnidaria spermatozoa. Biol Reprod. 1973 Feb;8(1):62–73. doi: 10.1093/biolreprod/8.1.62. [DOI] [PubMed] [Google Scholar]
  11. Lunger P. D. Early stages of spermatozoan development in the colonial hydroid Campanularia flexuosa. Z Zellforsch Mikrosk Anat. 1971;116(1):37–51. doi: 10.1007/BF00332856. [DOI] [PubMed] [Google Scholar]
  12. Pasteels J. J. Etude au microscope électronique de la réaction corticale. I. La réaction corticale de fécondation chez paracentrotus et sa chronologie. II. La réaction corticale de l'oeuf vierge de sabellaria alveolata. J Embryol Exp Morphol. 1965 Jun;13(3):327–339. [PubMed] [Google Scholar]
  13. Spurr A. R. A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res. 1969 Jan;26(1):31–43. doi: 10.1016/s0022-5320(69)90033-1. [DOI] [PubMed] [Google Scholar]
  14. Summers R. G. An ultrastructural study of the spermatozoon of Eudendrium ramosum. Z Zellforsch Mikrosk Anat. 1972;132(2):147–166. doi: 10.1007/BF00307008. [DOI] [PubMed] [Google Scholar]
  15. Summers R. G. The fine structure of the spermatozoon of Pennaria tiarella (coelenterata). J Morphol. 1970 May;131(1):117–129. doi: 10.1002/jmor.1051310108. [DOI] [PubMed] [Google Scholar]
  16. VENABLE J. H., COGGESHALL R. A SIMPLIFIED LEAD CITRATE STAIN FOR USE IN ELECTRON MICROSCOPY. J Cell Biol. 1965 May;25:407–408. doi: 10.1083/jcb.25.2.407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Vacquier V. D., Tegner M. J., Epel D. Protease activity establishes the block against polyspermy in sea urchin eggs. Nature. 1972 Dec 8;240(5380):352–353. doi: 10.1038/240352a0. [DOI] [PubMed] [Google Scholar]
  18. YAMAMOTO T. O. Physiology of fertilization in fish eggs. Int Rev Cytol. 1961;12:361–405. doi: 10.1016/s0074-7696(08)60545-8. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES