Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1974 Jan 1;60(1):221–235. doi: 10.1083/jcb.60.1.221

A BIOCHEMICAL AND CYTOCHEMICAL STUDY OF ADENOSINE TRIPHOSPHATASE ACTIVITY IN THE PHLOEM OF NICOTIAN A TABACUM

Jamison Gilder 1, James Cronshaw 1
PMCID: PMC2109145  PMID: 4271979

Abstract

A biochemical and cytochemical study has been made of the distribution of ATPase in mature and differentiating phloem cells of Nicotiana tabacum and of the substrate specificity and effects of fixation on enzyme activity. Homogenates of unfixed leaf midveins and midveins fixed in formaldehyde-glutaraldehyde were assayed for enzyme activity by determining the amount of Pi, liberated per milligram of protein from various substrates in a 30 min period at pH 7.2. In fresh homogenates, hydrolysis of ATP was not significantly different from that of ITP, CTP, and UTP. Hydrolysis of GTP was slightly higher than that of ATP. ATP hydrolysis by fresh homogenates was 17% more extensive than that of ADP, 76% more extensive than that of 5'-AMP, and was inhibited by fluoride and p-chloromercuribenzoate (PCMB). There was little or no hydrolysis of the competitive inhibitors 2'- and 3'-AMP nor with the alternate substrates p-nitrophenylphosphate (PNP) or β-glycerophosphate (β-GP). In homogenates of material fixed in formaldehyde-glutaraldehyde for 1¼ h, ATPase activity was 13% preserved. Hydrolysis of ATP by fixed homogenates was not significantly different from that of ADP, 5'-AMP, ITP, CTP, and GTP. Hydrolysis of UTP was lower. Fluoride and PCMB inhibited fixed ATPase activity. The results of cytochemical localization experiments using a lead phosphate precipitation technique were in agreement with the biochemical results. Similar localization patterns were obtained with the nucleoside triphosphates ATP, CTP, GTP, ITP, and UTP. Activity was also localized with ADP and 5'-AMP but not with the competitive inhibitors 2'- and 3'-AMP, nor with PNP or β-GP. Little or no reaction product was deposited in other controls incubated without substrate or with substrate plus fluoride, PCMB, or N-ethylmaleimide. ATPase activity was demonstrated chiefly at the plasma membrane of mature and differentiating phloem cells and was associated with the P-protein of mature sieve elements. It is suggested that the phloem transport system derives its energy from the demonstrated nucleoside triphosphatase activity.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson P. J. Purification and quantitation of glutaraldehyde and its effect on several enzyme activities in skeletal muscle. J Histochem Cytochem. 1967 Aug;15(11):652–661. doi: 10.1177/15.11.652. [DOI] [PubMed] [Google Scholar]
  2. Bieleski R. L. Phosphorus compounds in translocating Phloem. Plant Physiol. 1969 Apr;44(4):497–502. doi: 10.1104/pp.44.4.497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. GOLDFISCHER S., ESSNER E., NOVIKOFF A. B. THE LOCALIZATION OF PHOSPHATASE ACTIVITIES AT THE LEVEL OF ULTRASTRUCTURE. J Histochem Cytochem. 1964 Feb;12:72–95. doi: 10.1177/12.2.72. [DOI] [PubMed] [Google Scholar]
  4. Gilder J., Cronshaw J. The distribution of adenosine triphosphatase activity in differentiating and mature phloem cells of Nicotiana tabacum and its relationship to phloem transport. J Ultrastruct Res. 1973 Sep;44(5):388–404. doi: 10.1016/s0022-5320(73)90006-3. [DOI] [PubMed] [Google Scholar]
  5. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  6. Marchesi V. T., Palade G. E. The localization of Mg-Na-K-activated adenosine triphosphatase on red cell ghost membranes. J Cell Biol. 1967 Nov;35(2):385–404. doi: 10.1083/jcb.35.2.385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Moses H. L., Rosenthal A. S., Beaver D. L., Schuffman S. S. Lead ion and phosphatase histochemistry. II. Effect of adenosine triphosphate hydrolysis by lead ion on the histochemical localization of adenosine triphosphatase activity. J Histochem Cytochem. 1966 Oct;14(10):702–710. doi: 10.1177/14.10.702. [DOI] [PubMed] [Google Scholar]
  8. Moses H. L., Rosenthal A. S. Pitfalls in the use of lead ion for histochemical localization of nucleoside phosphatases. J Histochem Cytochem. 1968 Aug;16(8):530–539. doi: 10.1177/16.8.530. [DOI] [PubMed] [Google Scholar]
  9. Rosenthal A. S., Moses H. L., Beaver D. L., Schuffman S. S. Lead ion and phosphatase histochemistry. I. Nonenzymatic hydrolysis of nucleoside phosphates by lead ion. J Histochem Cytochem. 1966 Oct;14(10):698–701. doi: 10.1177/14.10.698. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES