Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1974 Jan 1;60(1):92–127. doi: 10.1083/jcb.60.1.92

SYNTHESIS, MIGRATION, AND RELEASE OF PRECURSOR COLLAGEN BY ODONTOBLASTS AS VISUALIZED BY RADIOAUTOGRAPHY AFTER [3H]PROLINE ADMINISTRATION

Melvyn Weinstock 1, C P Leblond 1
PMCID: PMC2109148  PMID: 4129079

Abstract

The elaboration of dentin collagen precursors by the odontoblasts in the incisor teeth of 30–40-g rats was investigated by electron microscopy, histochemistry, and radioautography after intravenous injection of tritium-labeled proline. At 2 min after injection, when the labeling of blood proline was high, radioactivity was restricted to the rough endoplasmic reticulum, indicating that it is the site of synthesis of the polypeptide precursors of collagen, the pro-alpha chains. At 10 min, when the labeling of blood proline had already declined, radioactivity was observed in spherical portions of Golgi saccules containing entangled threads, and, at 20 min, radioactivity appeared in cylindrical portions containing aggregates of parallel threads. The parallel threads measured 280–350 nm in length and stained with the low pH-phosphotungstic acid technique for carbohydrate and with the silver methenamine technique for aldehydes (as did extracellular collagen fibrils). The passage of label from spherical to cylindrical Golgi portions is associated with the reorganization of entangled into parallel threads, which is interpreted as the packing of procollagen molecules. Between 20 and 30 min, prosecretory and secretory granules respectively became labeled. These results indicate that the cylindrical portions of Golgi saccules transform into prosecretory and subsequently into secretory granules. Within these granules, the parallel threads, believed to be procollagen molecules, are transported to the odontoblast process. At 90 min and 4 h after injection, label was present in predentin, indicating that the labeled content of secretory granules had been released into predentin. This occurred by exocytosis as evidenced by the presence of secretory granules in fusion with the plasmalemma of the odontoblast process. It is proposed that pro-alpha chains give rise to procollagen molecules which assemble into parallel aggregates in the Golgi apparatus. Procollagen molecules are then transported within secretory granules to the odontoblast process and released by exocytosis. In predentin procollagen molecules would give rise to tropocollagen molecules, which would then polymerize into collagen fibrils.

Full Text

The Full Text of this article is available as a PDF (4.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bellamy G., Bornstein P. Evidence for procollagen, a biosynthetic precursors of collagen. Proc Natl Acad Sci U S A. 1971 Jun;68(6):1138–1142. doi: 10.1073/pnas.68.6.1138. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bornstein P., Von der Mark K., Wyke A. W., Ehrlich H. P., Monson J. M. Characterization of the pro- 1 chain of procollagen. J Biol Chem. 1972 May 10;247(9):2808–2813. [PubMed] [Google Scholar]
  3. Butler W. T., Cunningham L. W. Evidence for the linkage of a disaccharide to hydroxylysine in tropocollagen. J Biol Chem. 1966 Sep 10;241(17):3882–3888. [PubMed] [Google Scholar]
  4. Butler W. T., Finch J. E., Jr, Desteno C. V. Chemical character of proteins in rat incisors. Biochim Biophys Acta. 1972 Jan 26;257(1):167–171. doi: 10.1016/0005-2795(72)90266-8. [DOI] [PubMed] [Google Scholar]
  5. CAMERON D. A. The fine structure of osteoblasts in the metaphysis of the tibia of the young rat. J Biophys Biochem Cytol. 1961 Mar;9:583–595. doi: 10.1083/jcb.9.3.583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. CARNEIRO J., LEBLOND C. P. Role of osteoblasts and odontoblasts in secreting the collagen of bone and dentin, as shown by radioautography in mice given tritium-labelled glycine. Exp Cell Res. 1959 Oct;18:291–300. doi: 10.1016/0014-4827(59)90008-4. [DOI] [PubMed] [Google Scholar]
  7. Claude A. Growth and differentiation of cytoplasmic membranes in the course of lipoprotein granule synthesis in the hepatic cell. I. Elaboration of elements of the Golgi complex. J Cell Biol. 1970 Dec;47(3):745–766. doi: 10.1083/jcb.47.3.745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cooper G. W., Prockop D. J. Intracellular accumulation of protocollagen and extrusion of collagen by embryonic cartilage cells. J Cell Biol. 1968 Sep;38(3):523–537. doi: 10.1083/jcb.38.3.523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Frank R. M. Etude autoradiographique de la dentinogenese en microscopie electronique a l'aide de la proline tritiee chez le chat. Arch Oral Biol. 1970 Jul;15(7):583–596. doi: 10.1016/0003-9969(70)90128-7. [DOI] [PubMed] [Google Scholar]
  10. Frank R. M., Frank P. Autoradiographie quantitative de l'ostéogenèse en microscopie électronique à l'aide de la proline tritiée. Z Zellforsch Mikrosk Anat. 1969;99(1):121–133. [PubMed] [Google Scholar]
  11. Friend D. S., Farquhar M. G. Functions of coated vesicles during protein absorption in the rat vas deferens. J Cell Biol. 1967 Nov;35(2):357–376. doi: 10.1083/jcb.35.2.357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. GOLDBERG B., GREEN H. AN ANALYSIS OF COLLAGEN SECRETION BY ESTABLISHED MOUSE FIBROBLAST LINES. J Cell Biol. 1964 Jul;22:227–258. doi: 10.1083/jcb.22.1.227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Garant P. R., Szabo G., Nalbandian J. The fine structure of the mouse odontoblast. Arch Oral Biol. 1968 Aug;13(8):857–876. doi: 10.1016/0003-9969(68)90002-2. [DOI] [PubMed] [Google Scholar]
  14. Grant M. E., Prockop D. J. The biosynthesis of collagen. 1. N Engl J Med. 1972 Jan 27;286(4):194–199. doi: 10.1056/NEJM197201272860406. [DOI] [PubMed] [Google Scholar]
  15. Greenlee T. K., Jr, Ross R. The development of the rat flexor digital tendon, a fine structure study. J Ultrastruct Res. 1967 May;18(3):354–376. doi: 10.1016/s0022-5320(67)80124-2. [DOI] [PubMed] [Google Scholar]
  16. HENDERSON L. M., SCHURR P. E., ELVEHJEM C. A. The influence of fasting and nitrogen deprivation on the concentration of free amino acids in rat plasma. J Biol Chem. 1949 Feb;177(2):815–823. [PubMed] [Google Scholar]
  17. Jamieson J. D., Palade G. E. Intracellular transport of secretory proteins in the pancreatic exocrine cell. I. Role of the peripheral elements of the Golgi complex. J Cell Biol. 1967 Aug;34(2):577–596. doi: 10.1083/jcb.34.2.577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Jimenez S. A., Dehm P., Olsen B. R., Prokop D. J. Intracellular collagen and protocollagen from embryonic tendon cells. J Biol Chem. 1973 Jan 25;248(2):720–729. [PubMed] [Google Scholar]
  19. Jimenez S. A., Dehm P., Prockop D. J. Further evidence for a transport form of collagen. Its extrusion and extracellular conversion to tropocollagen in embryonic tendon. FEBS Lett. 1971 Oct 1;17(2):245–248. doi: 10.1016/0014-5793(71)80156-4. [DOI] [PubMed] [Google Scholar]
  20. Kerwar S. S., Kohn L. D., Lapiere C. M., Weissbach H. In vitro synthesis of procollagen on polysomes. Proc Natl Acad Sci U S A. 1972 Sep;69(9):2727–2731. doi: 10.1073/pnas.69.9.2727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kopriwa B M. A semiautomatic instrument for the radioautographic coating technique. J Histochem Cytochem. 1966 Dec;14(12):923–928. doi: 10.1177/14.12.923. [DOI] [PubMed] [Google Scholar]
  22. Kopriwa B. M. A reliable, standardized method for ultrastructural electron microscopic radioautography. Histochemie. 1973 Oct 3;37(1):1–17. doi: 10.1007/BF00306855. [DOI] [PubMed] [Google Scholar]
  23. LEBLOND C. P., BELANGER L. F., GREULICH R. C. Formation of bones and teeth as visualized by radioautography. Ann N Y Acad Sci. 1955 Apr 27;60(5):630–659. doi: 10.1111/j.1749-6632.1955.tb40055.x. [DOI] [PubMed] [Google Scholar]
  24. LEBLOND C. P. ELABORATION OF DENTINAL COLLAGEN IN ODONTOBLASTS AS SHOWN BY RADIOAUTOGRAPHY AFTER INJECTION OF LABELLED GLYCINE AND PROLINE. Ann Histochim. 1963 Jan-Mar;8:43–50. [PubMed] [Google Scholar]
  25. Layman D. L., McGoodwin E. B., Martin G. R. The nature of the collagen synthesized by cultured human fibroblasts. Proc Natl Acad Sci U S A. 1971 Feb;68(2):454–458. doi: 10.1073/pnas.68.2.454. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Leduc E. H., Bernhard W. Recent modifications of the glycol methacrylate embedding procedure. J Ultrastruct Res. 1967 Jul;19(1):196–199. doi: 10.1016/s0022-5320(67)80068-6. [DOI] [PubMed] [Google Scholar]
  27. Lenaers A., Ansay M., Nusgens B. V., Lapière C. M. Collagen made of extended -chains, procollagen, in genetically-defective dermatosparaxic calves. Eur J Biochem. 1971 Dec 10;23(3):533–543. doi: 10.1111/j.1432-1033.1971.tb01651.x. [DOI] [PubMed] [Google Scholar]
  28. MOVAT H. Z., FERNANDO N. V. The fine structure of connective tissue. I. The fibroblast. Exp Mol Pathol. 1962 Dec;1:509–534. doi: 10.1016/0014-4800(62)90040-0. [DOI] [PubMed] [Google Scholar]
  29. Neutra M., Leblond C. P. Synthesis of the carbohydrate of mucus in the golgi complex as shown by electron microscope radioautography of goblet cells from rats injected with glucose-H3. J Cell Biol. 1966 Jul;30(1):119–136. doi: 10.1083/jcb.30.1.119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Obrink B. Non-aggregated tropocollagen at physiological pH and ionic strength. A chemical and physico-chemical characterization of tropocollagen isolated from the skin of lathyritic rats. Eur J Biochem. 1972 Feb;25(3):563–572. doi: 10.1111/j.1432-1033.1972.tb01729.x. [DOI] [PubMed] [Google Scholar]
  31. Pickett-Heaps J. D. Preliminary attempts at ultrastructural polysaccharide localization in root tip cells. J Histochem Cytochem. 1967 Aug;15(8):442–455. doi: 10.1177/15.8.442. [DOI] [PubMed] [Google Scholar]
  32. Piez K. A. Cross-linking of collagen and elastin. Annu Rev Biochem. 1968;37:547–570. doi: 10.1146/annurev.bi.37.070168.002555. [DOI] [PubMed] [Google Scholar]
  33. REVEL J. P., HAY E. D. AN AUTORADIOGRAPHIC AND ELECTRON MICROSCOPIC STUDY OF COLLAGEN SYNTHESIS IN DIFFERENTIATING CARTILAGE. Z Zellforsch Mikrosk Anat. 1963 Oct 8;61:110–144. doi: 10.1007/BF00341524. [DOI] [PubMed] [Google Scholar]
  34. REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. ROTH T. F., PORTER K. R. YOLK PROTEIN UPTAKE IN THE OOCYTE OF THE MOSQUITO AEDES AEGYPTI. L. J Cell Biol. 1964 Feb;20:313–332. doi: 10.1083/jcb.20.2.313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Rambourg A., Hernandez W., Leblond C. P. Detection of complex carbohydrates in the Golgi apparatus of rat cells. J Cell Biol. 1969 Feb;40(2):395–414. doi: 10.1083/jcb.40.2.395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Rambourg A., Leblond C. P. Electron microscope observations on the carbohydrate-rich cell coat present at the surface of cells in the rat. J Cell Biol. 1967 Jan;32(1):27–53. doi: 10.1083/jcb.32.1.27. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Rambourg A. Morphological and histochemical aspects of glycoproteins at the surface of animal cells. Int Rev Cytol. 1971;31:57–114. doi: 10.1016/s0074-7696(08)60057-1. [DOI] [PubMed] [Google Scholar]
  39. Reith E. J. Collagen formation in developing molar teeth of rats. J Ultrastruct Res. 1967 Dec;21(5):383–414. doi: 10.1016/s0022-5320(67)80148-5. [DOI] [PubMed] [Google Scholar]
  40. SHELDON H., KIMBALL F. B. Studies on cartilage. III. The occurrence of collagen within vacuoles of the golgi apparatus. J Cell Biol. 1962 Mar;12:599–613. doi: 10.1083/jcb.12.3.599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. STACK M. V. The chemical nature of the organic matrix of bone, dentin, and enamel. Ann N Y Acad Sci. 1955 Apr 27;60(5):585–595. doi: 10.1111/j.1749-6632.1955.tb40053.x. [DOI] [PubMed] [Google Scholar]
  42. Salpeter M. M. H3-proline incorporation into cartilage: electron microscope autoradiographic observations. J Morphol. 1968 Apr;124(4):387–421. doi: 10.1002/jmor.1051240402. [DOI] [PubMed] [Google Scholar]
  43. Stark M., Lenaers A., Lapiere C., Kühn K. Electronoptical studies of procollagen from the skin of dermatosparaxic calves. FEBS Lett. 1971 Nov 1;18(2):225–227. doi: 10.1016/0014-5793(71)80450-7. [DOI] [PubMed] [Google Scholar]
  44. Takuma S., Nagai N. Ultrastructure of rat odontoblasts in various stages of their development and maturation. Arch Oral Biol. 1971 Sep;16(9):993–1011. doi: 10.1016/0003-9969(71)90205-6. [DOI] [PubMed] [Google Scholar]
  45. Trelstad R. L. Vacuoles in the embryonic chick corneal epithelium, an epithelium which produces collagen. J Cell Biol. 1971 Mar;48(3):689–694. doi: 10.1083/jcb.48.3.689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. VENABLE J. H., COGGESHALL R. A SIMPLIFIED LEAD CITRATE STAIN FOR USE IN ELECTRON MICROSCOPY. J Cell Biol. 1965 May;25:407–408. doi: 10.1083/jcb.25.2.407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Vuust J., Piez K. A. A kinetic study of collagen biosynthesis. J Biol Chem. 1972 Feb 10;247(3):856–862. [PubMed] [Google Scholar]
  48. WATSON M. L., AVERY J. K. The development of the hamster lower incisor as observed by electron microscopy. Am J Anat. 1954 Jul;95(1):109–161. doi: 10.1002/aja.1000950105. [DOI] [PubMed] [Google Scholar]
  49. Warshawsky H., Moore G. A technique for the fixation and decalcification of rat incisors for electron microscopy. J Histochem Cytochem. 1967 Sep;15(9):542–549. doi: 10.1177/15.9.542. [DOI] [PubMed] [Google Scholar]
  50. Warshawsky H. The presence of atypical collagen fibrils in EDTA decalcified predentine and dentine of rat incisors. Arch Oral Biol. 1972 Dec;17(12):1745–1754. doi: 10.1016/0003-9969(72)90238-5. [DOI] [PubMed] [Google Scholar]
  51. Weinstock A., Leblond C. P. Elaboration of the matrix glycoprotein of enamel by the secretory ameloblasts of the rat incisor as revealed by radioautography after galactose- 3 H injection. J Cell Biol. 1971 Oct;51(1):26–51. doi: 10.1083/jcb.51.1.26. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Weinstock A., Weinstock M., Leblond C. P. Autoradiographic detection of 3 H-fucose incorporation into glycoprotein by odontoblasts and its deposition at the site of the calcification front in dentin. Calcif Tissue Res. 1972;8(3):181–189. doi: 10.1007/BF02010136. [DOI] [PubMed] [Google Scholar]
  53. Weinstock M. Collagen formation--observations on its intracellular packaging and transport. Z Zellforsch Mikrosk Anat. 1972;129(4):455–470. doi: 10.1007/BF00316743. [DOI] [PubMed] [Google Scholar]
  54. Weinstock M., Leblond C. P. Les étapes de la synthèse du collagène. Union Med Can. 1972 Oct;101(10):2079–2084. [PubMed] [Google Scholar]
  55. Weinstock M., Leblond C. P. Radioautographic visualization of the deposition of a phosphoprotein at the mineralization front in the dentin of the rat incisor. J Cell Biol. 1973 Mar;56(3):838–845. doi: 10.1083/jcb.56.3.838. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Welsh R. A. Intracytoplasmic collagen formations in desmoid fibromatosis. Am J Pathol. 1966 Sep;49(3):515–535. [PMC free article] [PubMed] [Google Scholar]
  57. Whur P., Herscovics A., Leblond C. P. Radioautographic visualization of the incorporation of galactose-3H and mannose-3H by rat thyroids in vitro in relation to the stages of thyroglobulin synthesis. J Cell Biol. 1969 Nov;43(2):289–311. doi: 10.1083/jcb.43.2.289. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES