Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1974 Feb 1;60(2):423–433. doi: 10.1083/jcb.60.2.423

POROUS SUBSTRUCTURE OF THE GLOMERULAR SLIT DIAPHRAGM IN THE RAT AND MOUSE

Richard Rodewald 1, Morris J Karnovsky 1
PMCID: PMC2109155  PMID: 4204974

Abstract

The highly ordered, isoporous substructure of the glomerular slit diaphragm was revealed in rat and mouse kidneys fixed by perfusion with tannic acid and glutaraldehyde. The slit diaphragm was similar in both animal species and appeared as a continuous junctional band, 300–450 Å wide, consistently present within all slits formed by the epithelial foot processes. The diaphragm exhibited a zipper-like substructure with alternating, periodic cross bridges extending from the podocyte plasma membranes to a central filament which ran parallel to and equidistant from the cell membranes. The dimensions and spacing of the cross bridges defined a uniform population of rectangular pores approximately 40 by 140 Å in cross section and 70 Å in length. The total area of the pores was calculated to be about 2–3% of the total surface area of the glomerular capillaries. Physiological data indicate that the glomerular filter functions as if it were an isoporous membrane which excludes proteins larger than serum albumin. The similarity between the dimensions of the pores in the slit diaphragm and estimates for the size and shape of serum albumin supports the conclusion from tracer experiments that the slit diaphragm may serve as the principal filtration barrier to plasma proteins in the kidney.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson W. A. The use of exogenous myoglobin as an ultrastructural tracer. Reabsorption and translocation of protein by the renal tubule. J Histochem Cytochem. 1972 Sep;20(9):672–684. doi: 10.1177/20.9.672. [DOI] [PubMed] [Google Scholar]
  2. Barger A. C., Herd J. A. The renal circulation. N Engl J Med. 1971 Mar 4;284(9):482–490. doi: 10.1056/NEJM197103042840907. [DOI] [PubMed] [Google Scholar]
  3. Graham R. C., Jr, Karnovsky M. J. Glomerular permeability. Ultrastructural cytochemical studies using peroxidases as protein tracers. J Exp Med. 1966 Dec 1;124(6):1123–1134. doi: 10.1084/jem.124.6.1123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Graham R. C., Jr, Kellermeyer R. W. Bovine lactoperoxidase as a cytochemical protein tracer for electron microscopy. J Histochem Cytochem. 1968 Apr;16(4):275–278. doi: 10.1177/16.4.275. [DOI] [PubMed] [Google Scholar]
  5. Jones D. B. Mucosubstances of the glomerulus. Lab Invest. 1969 Aug;21(2):119–125. [PubMed] [Google Scholar]
  6. Karnovsky M. J., Ainsworth S. K. The structural basis of glomerular filtration. Adv Nephrol Necker Hosp. 1972;2:35–60. [PubMed] [Google Scholar]
  7. Karnovsky M. J., Rice D. F. Exogenous cytochrome c as an ultrastructural tracer. J Histochem Cytochem. 1969 Nov;17(11):751–753. doi: 10.1177/17.11.751. [DOI] [PubMed] [Google Scholar]
  8. LATTA H., MAUNSBACH A. B., MADDEN S. C. The centrolobular region of the renal glomerulus studied by electron microscopy. J Ultrastruct Res. 1960 Dec;4:455–472. doi: 10.1016/s0022-5320(60)80033-0. [DOI] [PubMed] [Google Scholar]
  9. LUFT J. H. Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol. 1961 Feb;9:409–414. doi: 10.1083/jcb.9.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Latta H. The glomerular cappillary wall. J Ultrastruct Res. 1970 Sep;32(5):526–544. doi: 10.1016/s0022-5320(70)80026-0. [DOI] [PubMed] [Google Scholar]
  11. Maunsbach A. B. The influence of different fixatives and fixation methods on the ultrastructure of rat kidney proximal tubule cells. I. Comparison of different perfusion fixation methods and of glutaraldehyde, formaldehyde and osmium tetroxide fixatives. J Ultrastruct Res. 1966 Jun;15(3):242–282. doi: 10.1016/s0022-5320(66)80109-0. [DOI] [PubMed] [Google Scholar]
  12. Oliver C., Essner E. Protein transport in mouse kidney utilizing tyrosinase as an ultrastructural tracer. J Exp Med. 1972 Aug 1;136(2):291–304. doi: 10.1084/jem.136.2.291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. PAPPENHEIMER J. R. Uber die Permeabililität der Glomerulummembranen in der Niere. Klin Wochenschr. 1955 Apr 15;33(15-16):362–365. doi: 10.1007/BF01467967. [DOI] [PubMed] [Google Scholar]
  14. PEASE D. C. Fine structures of the kidney seen by electron microscopy. J Histochem Cytochem. 1955 Jul;3(4):295–308. doi: 10.1177/3.4.295. [DOI] [PubMed] [Google Scholar]
  15. REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Venkatachalam M. A., Fahimi H. D. The use of beef liver catalase as a protein tracer for electron microscopy. J Cell Biol. 1969 Aug;42(2):480–489. doi: 10.1083/jcb.42.2.480. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Venkatachalam M. A., Karnovsky M. J., Fahimi H. D., Cotran R. S. An ultrastructural study of glomerular permeability using catalase and peroxidase as tracer proteins. J Exp Med. 1970 Dec 1;132(6):1153–1167. doi: 10.1084/jem.132.6.1153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. WATSON M. L. Staining of tissue sections for electron microscopy with heavy metals. J Biophys Biochem Cytol. 1958 Jul 25;4(4):475–478. doi: 10.1083/jcb.4.4.475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. YAMADA E. The fine structure of the renal glomerulus of the mouse. J Biophys Biochem Cytol. 1955 Nov 25;1(6):551–566. doi: 10.1083/jcb.1.6.551. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES