Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1974 Feb 1;60(2):365–374. doi: 10.1083/jcb.60.2.365

SYNAPTIC VESICLE DEPLETION AND RECOVERY IN CAT SYMPATHETIC GANGLIA ELECTRICALLY STIMULATED IN VIVO

Evidence for Transmitter Secretion by Exocytosis

Joseph J Pysh 1, Ronald G Wiley 1
PMCID: PMC2109162  PMID: 4813212

Abstract

This study examined the ultrastructure of presynaptic terminals after short periods of vigorous acetylcholine (ACh) secretion in the cat superior cervical ganglion in vivo. Experimental trunks of cats anesthetized with chloralose-urethane were stimulated supra-maximally for periods of 15–30 min and at several frequencies including the upper physiological range (5–10 Hz). Stimulated and contralateral control ganglia from each animal were fixed by intra-arterial aldehyde perfusion, processed simultaneously, and compared by electron microscopy. Stimulation produced an absolute decrease in the number of synaptic vesicles, an enlargement of axonal surface membrane, and distinct alterations in the shape of presynaptic terminals. Virtually complete recovery occurred within 1 h after stimulation at 10 Hz for 30 min. These results support the hypothesis that ACh release at mammalian axodendritic synapses occurs by exocytosis of synaptic vesicles resulting in the incorporation of vesicle membrane into the presynaptic membrane and that synaptic vesicles subsequently are reformed from plasma membrane.

Full Text

The Full Text of this article is available as a PDF (956.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amsterdam A., Ohad I., Schramm M. Dynamic changes in the ultrastructure of the acinar cell of the rat parotid gland during the secretory cycle. J Cell Biol. 1969 Jun;41(3):753–773. doi: 10.1083/jcb.41.3.753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Atwood H. L., Lang F., Morin W. A. Synaptic vesicles: selective depletion in crayfish excitatory and inhibitory axons. Science. 1972 Jun 23;176(4041):1353–1355. doi: 10.1126/science.176.4041.1353. [DOI] [PubMed] [Google Scholar]
  3. Ceccarelli B., Hurlbut W. P., Mauro A. Turnover of transmitter and synaptic vesicles at the frog neuromuscular junction. J Cell Biol. 1973 May;57(2):499–524. doi: 10.1083/jcb.57.2.499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Friesen A. J., Khatter J. C. Effect of stimulation on synaptic vesicles in the superior cerivcal ganglion of the cat. Experientia. 1971 Mar 15;27(3):285–287. doi: 10.1007/BF02138149. [DOI] [PubMed] [Google Scholar]
  5. Heuser J. E., Reese T. S. Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction. J Cell Biol. 1973 May;57(2):315–344. doi: 10.1083/jcb.57.2.315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Heuser J., Miledi R. Effects of lanthanum ions on function and structure of frog neuromuscular junctions. Proc R Soc Lond B Biol Sci. 1971 Dec 14;179(1056):247–260. doi: 10.1098/rspb.1971.0096. [DOI] [PubMed] [Google Scholar]
  7. Holtzman E., Freeman A. R., Kashner L. A. Stimulation-dependent alterations in peroxidase uptake at lobster neuromuscular junctions. Science. 1971 Aug 20;173(3998):733–736. doi: 10.1126/science.173.3998.733. [DOI] [PubMed] [Google Scholar]
  8. Hubbard J. I., Kwanbunbumpen S. Evidence for the vesicle hypothesis. J Physiol. 1968 Feb;194(2):407–420. doi: 10.1113/jphysiol.1968.sp008415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Korneliussen H. Ultrastructure of normal and stimulated motor endplates with comments on the origin and fate of synaptic vesicles. Z Zellforsch Mikrosk Anat. 1972;130(1):28–57. doi: 10.1007/BF00306993. [DOI] [PubMed] [Google Scholar]
  10. Perri V., Sacchi O., Raviola E., Raviola G. Evaluation of the number and distribution of synaptic vesicles at cholinergic nerve-endings after sustained stimulation. Brain Res. 1972 Apr 28;39(2):526–529. doi: 10.1016/0006-8993(72)90458-1. [DOI] [PubMed] [Google Scholar]
  11. Pysh J. J., Wiley R. G. Morphologic alterations of synapses in electrically stimulated superior cervical ganglia of the cat. Science. 1972 Apr 14;176(4031):191–193. doi: 10.1126/science.176.4031.191. [DOI] [PubMed] [Google Scholar]
  12. Párducz A., Fehér O. Fine structural alterations of presynaptic endings in the superior cervical ganglion of the cat after exhausting preganglionic stimulation. Experientia. 1970 Jun 15;26(6):629–630. doi: 10.1007/BF01898728. [DOI] [PubMed] [Google Scholar]
  13. Párducz A., Fehér O., Joó F. Effects of stimulation and hemicholinium (HC-3) on the fine structure of nerve endings in the superior cervical ganglion of the cat. Brain Res. 1971 Nov;34(1):61–72. doi: 10.1016/0006-8993(71)90351-9. [DOI] [PubMed] [Google Scholar]
  14. Röhlich P., Anderson P., Uvnäs B. Electron microscope observations on compounds 48-80-induced degranulation in rat mast cells. Evidence for sequential exocytosis of storage granules. J Cell Biol. 1971 Nov;51(21):465–483. doi: 10.1083/jcb.51.2.465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Whittaker V. P. The application of subcellular fractionation techniques to the study of brain function. Prog Biophys Mol Biol. 1965;15:39–96. doi: 10.1016/0079-6107(65)90004-0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES