Abstract
Mice, 7–8-mo old, of the C57BL/KsJ-db strain and homozygotic for the mutant gene db, exhibited marked hyperglycemia and moderately elevated serum insulin levels. Light and electron microscopy provided evidence of a slightly decreased proportion of β cells in the pancreatic islets, irregular islet architecture with intraislet ducts, and degenerative as well as hypertrophic changes in the individual β cells. As a rule, islets microdissected from these mice did not release insulin in response to glucose, theophylline, iodoacetamide, or chloromercuribenzene-p-sulphonic acid. The absence of secretory responses was not simply due to lack of insulin. Although the islet content of insulin was decreased in C57BL/KsJ-db/db mice, the remaining amount was severalfold larger than that released from stimulated islets of normal controls. Another mutation, db 2J, an allele of db with identical phenotypic expressions in the C57BL/KsJ strain, was studied on the genetic background C57BL/6J. In contrast to the severely diabetic C57BL/KsJ-db/db animals, the C57BL/6J-db 2J/db 2J mice were characterized by highly elevated serum insulin levels and only moderate hyperglycemia. Their endocrine pancreas was enlarged and showed an increased proportion of β cells. Like the islets of normal mice, those of C57BL/6J-db 2J/db 2J mice responded to glucose and chloromercuribenzene-p-sulphonic acid, the glucose-induced responses being potentiated by theophylline or iodoacetamide. C57BL/KsJ-db/db mice should provide a valuable model for studying defects in insulin secretion in relation to diabetes mellitus. Mice of the C57BL/6J strain offer a control material that may help to elucidate the dependence of the insulin secretory defect on the background genome.
Full Text
The Full Text of this article is available as a PDF (1.6 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ammon H. P., Steinke J. 6-Amnionicotinamide (6-AN) as a diabetogenic agent. In vitro and in vivo studies in the rat. Diabetes. 1972 Mar;21(3):143–148. doi: 10.2337/diab.21.3.143. [DOI] [PubMed] [Google Scholar]
- Andersson A., Hellerström C. Metabolic characteristics of isolated pancreatic islets in tissue culture. Diabetes. 1972;21(2 Suppl):546–554. doi: 10.2337/diab.21.2.s546. [DOI] [PubMed] [Google Scholar]
- Ashcroft S. J., Weerasinghe L. C., Bassett J. M., Randle P. J. The pentose cycle and insulin release in mouse pancreatic islets. Biochem J. 1972 Feb;126(3):525–532. doi: 10.1042/bj1260525. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ashcroft S. J., Weerasinghe L. C., Randle P. J. Interrelationship of islet metabolism, adenosine triphosphate content and insulin release. Biochem J. 1973 Feb;132(2):223–231. doi: 10.1042/bj1320223. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bloom G. D., Hellman B., Idahl L. A., Lernmark A., Sehlin J., Täljedal I. B. Effects of organic mercurials on mammalian pancreatic -cells. Insulin release, glucose transport, glucose oxidation, membrane permeability and ultrastructure. Biochem J. 1972 Sep;129(2):241–254. doi: 10.1042/bj1290241. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boquist L. Intranuclear rods in pancreatic islet beta-cells. J Cell Biol. 1969 Nov;43(2):377–381. doi: 10.1083/jcb.43.2.377. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boquist L. Pancreatic islet morphology in diabetic Chinese hamsters. A light and electron microscopic study. Acta Pathol Microbiol Scand. 1969;75(3):399–414. [PubMed] [Google Scholar]
- Boquist L. Tubular cytoplasmic bodies in pancreatic islet B-cells of mice. Z Zellforsch Mikrosk Anat. 1970;106(1):69–78. doi: 10.1007/BF01027718. [DOI] [PubMed] [Google Scholar]
- Cameron D. P., Stauffacher W., Orci L., Amherdt M., Renold A. E. Defective immunoreative insulin secretion in the Acomys cahirinus. Diabetes. 1972 Nov;21(11):1060–1071. doi: 10.2337/diab.21.11.1060. [DOI] [PubMed] [Google Scholar]
- Cerasi E., Luft R. "What is inherited--what is added" hypothesis for the pathogenesis of diabetes mellitus. Diabetes. 1967 Sep;16(9):615–627. doi: 10.2337/diab.16.9.615. [DOI] [PubMed] [Google Scholar]
- Coleman D. L., Hummel K. P. Studies with the mutation, diabetes, in the mouse. Diabetologia. 1967 Apr;3(2):238–248. doi: 10.1007/BF01222201. [DOI] [PubMed] [Google Scholar]
- Coleman D. L., Hummel K. P. The influence of genetic background on the expression of the obese (Ob) gene in the mouse. Diabetologia. 1973 Aug;9(4):287–293. doi: 10.1007/BF01221856. [DOI] [PubMed] [Google Scholar]
- Deery D. J., Taylor K. W. Effect of phenylpyruvate on enzymes involved in fatty acid synthesis in rat brain. Biochem J. 1973 Jun;134(2):557–563. doi: 10.1042/bj1340557. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Felig P. Pathophysiology of diabetes mellitus. Med Clin North Am. 1971 Jul;55(4):821–834. doi: 10.1016/s0025-7125(16)32478-6. [DOI] [PubMed] [Google Scholar]
- Gerritsen G. C., Dulin W. E. Characterization of diabetes in the Chinese hamster. Diabetologia. 1967 Apr;3(2):74–84. doi: 10.1007/BF01222182. [DOI] [PubMed] [Google Scholar]
- Grimelius L. A silver nitrate stain for alpha-2 cells in human pancreatic islets. Acta Soc Med Ups. 1968;73(5-6):243–270. [PubMed] [Google Scholar]
- HELLERSTROEM C. A METHOD FOR THE MICRODISSECTION OF INTACT PANCREATIC ISLETS OF MAMMALS. Acta Endocrinol (Copenh) 1964 Jan;45:122–132. [PubMed] [Google Scholar]
- HELLERSTROEM C., HELLMAN B. Some aspects of silver impregnation of the islets of Langerhans in the rat. Acta Endocrinol (Copenh) 1960 Dec;35:518–532. doi: 10.1530/acta.0.xxxv0518. [DOI] [PubMed] [Google Scholar]
- Hahn H. J., Wappler E., Fiedler H. Die Sandratte (Psammomys obesus): Ein an Spontandiabetes erkrankendes Tier. Eine Ubersicht. Z Versuchstierkd. 1971;13(5):275–282. [PubMed] [Google Scholar]
- Hellman B., Idahl L. A., Lernmark A., Sehlin J., Täljedal I. B. Iodoacetamide-induced sensitization of the pancreatic beta-cells to glucose stimulation. Biochem J. 1973 Apr;132(4):775–789. doi: 10.1042/bj1320775. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hellman B. Studies in obese-hyperglycemic mice. Ann N Y Acad Sci. 1965 Oct 8;131(1):541–558. doi: 10.1111/j.1749-6632.1965.tb34819.x. [DOI] [PubMed] [Google Scholar]
- Hummel K. P., Coleman D. L., Lane P. W. The influence of genetic background on expression of mutations at the diabetes locus in the mouse. I. C57BL-KsJ and C57BL-6J strains. Biochem Genet. 1972 Aug;7(1):1–13. doi: 10.1007/BF00487005. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., PASSONNEAU J. V., HASSELBERGER F. X., SCHULZ D. W. EFFECT OF ISCHEMIA ON KNOWN SUBSTRATES AND COFACTORS OF THE GLYCOLYTIC PATHWAY IN BRAIN. J Biol Chem. 1964 Jan;239:18–30. [PubMed] [Google Scholar]
- Larkins R. G. Defective insulin secretory response to glucose in the New Zealand obese mouse. Improvement with restricted diet. Diabetes. 1973 Apr;22(4):251–255. doi: 10.2337/diab.22.4.251. [DOI] [PubMed] [Google Scholar]
- Lernmark A. [Isolated mouse islets as a model for studying insulin release]. Acta Diabetol Lat. 1971 Jul-Aug;8(4):649–679. doi: 10.1007/BF01550894. [DOI] [PubMed] [Google Scholar]
- Loge O., Losert W., Jahn P. Insulinfreisetzende Wirkung von Glymidin-Natrium (Glykodiazin), Isopropylnoradrenalin, Glucagon und Theophyllin an chinesischen Streifenhamstern mit spontanem oder streptozotocininduziertem Diabetes mellitus. Res Exp Med (Berl) 1973 Jun 19;160(4):292–306. doi: 10.1007/BF01851469. [DOI] [PubMed] [Google Scholar]
- Malaisse W. J., Malaisse-Lagae F., Coleman D. L. Insulin secretion in mice with an hereditary diabetes. Proc Soc Exp Biol Med. 1968 Oct;129(1):65–69. doi: 10.3181/00379727-129-33251. [DOI] [PubMed] [Google Scholar]
- Seltzer H. S., Allen E. W., Herron A. L., Jr, Brennan M. T. Insulin secretion in response to glycemic stimulus: relation of delayed initial release to carbohydrate intolerance in mild diabetes mellitus. J Clin Invest. 1967 Mar;46(3):323–335. doi: 10.1172/JCI105534. [DOI] [PMC free article] [PubMed] [Google Scholar]