Abstract
Inhibitors of protein synthesis capable of differential effects on nascent peptide synthesis on membrane-bound and free polyribosomes were employed to investigate the structure and function of cellular membranes of liver. The formation of membranous whorls in the cytoplasm and distension of nuclear membranes were induced by inhibitors of protein synthesis (i.e., cycloheximide and emetine) which predominantly interfere with nascent peptide synthesis on membrane-bound polyribosomes in situ. Other inhibitors of protein synthesis such as puromycin and fusidic acid, which inhibit nascent peptide synthesis on both free and membrane-bound polyribosomes, and chloramphenicol, which inhibits mitochondrial protein synthesis, did not induce these alterations. Cycloheximide, puromycin, and chloramphenicol produce some common cellular lesions as reflected by similar alterations in morphology, such as swelling of mitochondria, degranulation of rough endoplasmic reticulum, and aggregation of free ribosomes. The process of whorl formation in the cytoplasm, the incorporation of [3H]leucine and of [3H]choline into endoplasmic reticulum and the total NADPH-cytochrome c reductase activity of the endoplasmic reticulum were determined. During maximum formation of membranous whorls, [3H]leucine incorporation into cytoplasmic membranes was inhibited, while [3H]choline incorporation into these structures was increased; maximum inhibition of protein synthesis and stimulation of choline incorporation into endoplasmic reticulum, however, preceded whorl formation. Cycloheximide decreased the activity of NADPH-cytochrome c reductase of rough endoplasmic reticulum, but increased NADPH-cytochrome c reductase activity of smooth endoplasmic reticulum. In addition, cycloheximide decreased the content of hemoprotein in both the microsomal and mitochondrial fractions of rat liver, and the activities of mixed function oxidase and of oxidative phosphorylation were impaired to different degrees. Succinate-stimulated microsomal oxidation was also inhibited. The possible mechanisms involved in the formation of membranous whorls, as well as their functions, are discussed.
Full Text
The Full Text of this article is available as a PDF (1.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adoutte A., Balmefrézol M., Beisson J., André J. The effects of erythromycin and chloramphenicol on the ultrastructure of mitochondria in sensitive and resistant strains of Paramecium. J Cell Biol. 1972 Jul;54(1):8–19. doi: 10.1083/jcb.54.1.8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Argus M. F., Sohal R. S., Bryant G. M., Hoch-Ligeti C., Arcos J. C. Dose-response and ultrastructural alterations in dioxane carcinogenesis. Influence of methylcholanthrene on acute toxicity. Eur J Cancer. 1973 Apr;9(4):237–243. doi: 10.1016/0014-2964(73)90088-1. [DOI] [PubMed] [Google Scholar]
- BARTLETT G. R. Phosphorus assay in column chromatography. J Biol Chem. 1959 Mar;234(3):466–468. [PubMed] [Google Scholar]
- Beale G. H., Knowles J. K., Tait A. Mitochondrial genetics in Paramecium. Nature. 1972 Feb 18;235(5338):396–397. doi: 10.1038/235396a0. [DOI] [PubMed] [Google Scholar]
- Becker F. F., Lane B. P. Regeneration of the mammalian liver. I. Auto-phagocytosis during dedifferentiation of the liver cell in preparation for cell division. Am J Pathol. 1965 Nov;47(5):783–801. [PMC free article] [PubMed] [Google Scholar]
- Blobel G., Potter V. R. Studies on free and membrane-bound ribosomes in rat liver. I. Distribution as related to total cellular RNA. J Mol Biol. 1967 Jun 14;26(2):279–292. doi: 10.1016/0022-2836(67)90297-5. [DOI] [PubMed] [Google Scholar]
- Bock K. W., Siekevitz P., Palade G. E. Localization and turnover studies of membrane nicotinamide adenine dinucleotide glycohydrolase in rat liver. J Biol Chem. 1971 Jan 10;246(1):188–195. [PubMed] [Google Scholar]
- CHANCE B., WILLIAMS G. R. Respiratory enzymes in oxidative phosphorylation. I. Kinetics of oxygen utilization. J Biol Chem. 1955 Nov;217(1):383–393. [PubMed] [Google Scholar]
- Cinti D. L., Ritchie A., Schenkman J. B. Hepatic organelle interaction. II. Effect of tricarboxylic acid cycle intermediates on N-demethylation and hydroxylation reactions in rat liver. Mol Pharmacol. 1972 May;8(3):339–344. [PubMed] [Google Scholar]
- Cinti D. L., Schenkman J. B. Hepatic organelle interaction. I. Spectral investigation during drug biotransformation. Mol Pharmacol. 1972 May;8(3):327–338. [PubMed] [Google Scholar]
- Dallner G., Siekevitz P., Palade G. E. Biogenesis of endoplasmic reticulum membranes. I. Structural and chemical differentiation in developing rat hepatocyte. J Cell Biol. 1966 Jul;30(1):73–96. doi: 10.1083/jcb.30.1.73. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dallner G., Siekevitz P., Palade G. E. Biogenesis of endoplasmic reticulum membranes. I. Structural and chemical differentiation in developing rat hepatocyte. J Cell Biol. 1966 Jul;30(1):73–96. doi: 10.1083/jcb.30.1.73. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dallner G., Siekevitz P., Palade G. E. Biogenesis of endoplasmic reticulum membranes. II. Synthesis of constitutive microsomal enzymes in developing rat hepatocyte. J Cell Biol. 1966 Jul;30(1):97–117. doi: 10.1083/jcb.30.1.97. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dehlinger P. J., Schimke R. T. Size distribution of membrane proteins of rat liver and their relative rates of degradation. J Biol Chem. 1971 Apr 25;246(8):2574–2583. [PubMed] [Google Scholar]
- EMMELOT P., BENEDETTI E. L. Changes in the fine structure of rat liver cells brought about by dimethylnitrosamine. J Biophys Biochem Cytol. 1960 Apr;7:393–396. doi: 10.1083/jcb.7.2.393. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FAWCETT D. W., WILSON J. W. A note on the occurrence of virus-like particles in the spontaneous hepatomas of C3H mice. J Natl Cancer Inst. 1955 Apr;15(5 Suppl):1505–1511. [PubMed] [Google Scholar]
- FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
- Flaks B. Formation of membrane-glycogen arrays in rat hepatoma cells. J Cell Biol. 1968 Feb;36(2):410–414. doi: 10.1083/jcb.36.2.410. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ganoza M. C., Williams C. A. In vitro synthesis of different categories of specific protein by membrane-bound and free ribosomes. Proc Natl Acad Sci U S A. 1969 Aug;63(4):1370–1376. doi: 10.1073/pnas.63.4.1370. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Glazer R. I., Sartorelli A. C. Induction by phenobarbital of reduced nicotinamide-adenine dinucleotide phosphate (NADPH) cytochrome c reductase in regenerating rat liver. Biochem Pharmacol. 1971 Dec;20(12):3521–3527. doi: 10.1016/0006-2952(71)90457-6. [DOI] [PubMed] [Google Scholar]
- Glazer R. I., Sartorelli A. C. The differential sensitivity of free and membrane-bound polyribosomes to inhibitors of protein synthesis. Biochem Biophys Res Commun. 1972 Feb 16;46(3):1418–1424. doi: 10.1016/s0006-291x(72)80134-7. [DOI] [PubMed] [Google Scholar]
- Glazer R. I., Sartorelli A. C. The effect of phenobarbital on the synthesis of nascent protein on free and membrane-bound polyribosomes of normal and regenerating liver. Mol Pharmacol. 1972 Nov;8(6):701–710. [PubMed] [Google Scholar]
- Holtzman J. L., Gillette J. R. The effect of phenobarbital on the turnover of microsomal phospholipid in male and female rats. J Biol Chem. 1968 Jun 10;243(11):3020–3028. [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Leak L. V., Rosen V. J., Jr Early ultrastructural alterations in proximal tubular cells after unilateral nephrectomy and x-irradiation. J Ultrastruct Res. 1966 Jun;15(3):326–348. doi: 10.1016/s0022-5320(66)80112-0. [DOI] [PubMed] [Google Scholar]
- Moyer G. H., Murray R. K., Khairallah L. H., Suss R., Pitot H. C. Ultrastructural and biochemical characteristics of endoplasmic reticulum fractions of the Morris 7800 and Reuber H-35 hepatomas. Lab Invest. 1970 Jul;23(1):108–118. [PubMed] [Google Scholar]
- Omura T., Kuriyama Y. Role of rough and smooth microsomes in the biosynthesis of microsomal membranes. J Biochem. 1971 Apr;69(4):651–658. doi: 10.1093/oxfordjournals.jbchem.a129514. [DOI] [PubMed] [Google Scholar]
- Omura T., Siekevitz P., Palade G. E. Turnover of constituents of the endoplasmic reticulum membranes of rat hepatocytes. J Biol Chem. 1967 May 25;242(10):2389–2396. [PubMed] [Google Scholar]
- PALAY S. L., PALADE G. E. The fine structure of neurons. J Biophys Biochem Cytol. 1955 Jan;1(1):69–88. doi: 10.1083/jcb.1.1.69. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PORTER K. R., BRUNI C. An electron microscope study of the early effects of 3'-Me-DAB on rat liver cells. Cancer Res. 1959 Nov;19:997–1009. [PubMed] [Google Scholar]
- Ragnotti G., Lawford G. R., Campbell P. N. Biosynthesis of microsomal nicotinamide-adenine dinucleotide phosphate-cytochrome c reductase by membrane-bound and free polysomes from rat liver. Biochem J. 1969 Apr;112(2):139–147. doi: 10.1042/bj1120139. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Redman C. M. Biosynthesis of serum proteins and ferritin by free and attached ribosomes of rat liver. J Biol Chem. 1969 Aug 25;244(16):4308–4315. [PubMed] [Google Scholar]
- SALOMON J. C. [Changes in liver parenchymal cells in the rat subjected to the effects of thioacetamide. Electron microscope study of lesions observed during the late phase of chronic poisoning]. J Ultrastruct Res. 1962 Oct;7:293–307. doi: 10.1016/s0022-5320(62)90025-4. [DOI] [PubMed] [Google Scholar]
- STEINER J. W., MIYAI K., PHILLIPS M. J. ELECTRON MICROSCOPY OF MEMBRANE-PARTICLE ARRAYS IN LIVER CELLS OF ETHIONINE-INTOXICATED RATS. Am J Pathol. 1964 Feb;44:169–214. [PMC free article] [PubMed] [Google Scholar]
- Segal H. L., Matsuzawa T., Haider M., Abraham G. J. What determines the half-life of proteins in vivo? Some experiences with alanine aminotransferase of rat tissues. Biochem Biophys Res Commun. 1969 Aug 22;36(5):764–770. doi: 10.1016/0006-291x(69)90675-5. [DOI] [PubMed] [Google Scholar]
- Shinozuka H., Reid I. M., Shull K. H., Liang H., Farber E. Dynamics of liver cell injury and repair. I. Spontaneous reformation of the nucleolus and polyribosomes in the presence of extensive cytoplasmic damage induced by ethionine. Lab Invest. 1970 Sep;23(3):253–267. [PubMed] [Google Scholar]
- Storrie B., Attardi G. Expression of the mitochondrial genome in HeLa cells. IX. Effect of inhibition of mitochondrial protein synthesis on mitochondrial formation. J Cell Biol. 1973 Mar;56(3):819–831. doi: 10.1083/jcb.56.3.819. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Svoboda D., Higginson J. A comparison of ultrastructural changes in rat liver due to chemical carcinogens. Cancer Res. 1968 Sep;28(9):1703–1733. [PubMed] [Google Scholar]
- TRIER J. S. The fine structure of the parathyroid gland. J Biophys Biochem Cytol. 1958 Jan 25;4(1):13–22. doi: 10.1083/jcb.4.1.13. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WEISS J. M. The ergastoplasm; its fine structure and relation to protein synthesis as studied with the electron microscope in the pancreas of the Swiss albino mouse. J Exp Med. 1953 Dec;98(6):607–618. doi: 10.1084/jem.98.6.607. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WOOD R. L. THE FINE STRUCTURE OF HEPATIC CELLS IN CHRONIC ETHIONINE POISONING AND DURING RECOVERY. Am J Pathol. 1965 Feb;46:307–330. [PMC free article] [PubMed] [Google Scholar]
