Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1974 Jul 1;62(1):1–19. doi: 10.1083/jcb.62.1.1

THE ORGANIZATION OF PROTEINS IN THE HUMAN RED BLOOD CELL MEMBRANE

A Review

Theodore L Steck 1
PMCID: PMC2109190  PMID: 4600883

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALIVISATOS S. G., KASHKET S., DENSTEDT O. F. The metabolism of the erythrocyte. IX. Diphosphopyridine nucleotidase of erythrocytes. Can J Biochem Physiol. 1956 Jan;34(1):46–60. [PubMed] [Google Scholar]
  2. Altendorf K. H., Staehelin L. A. Orientation of membrane vesicles from Escherichia coli as detected by freeze-cleave electron microscopy. J Bacteriol. 1974 Feb;117(2):888–899. doi: 10.1128/jb.117.2.888-899.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Arrotti J. J., Garvin J. E. Selective labeling of human erythrocyte membrane components with tritiated trinitrobenzenesulfonic acid and picryl chloride. Biochem Biophys Res Commun. 1972 Oct 6;49(1):205–211. doi: 10.1016/0006-291x(72)90030-7. [DOI] [PubMed] [Google Scholar]
  4. Avruch J., Fairbanks G. Demonstration of a phosphopeptide intermediate in the Mg ++ -dependent, Na + - and K + -stimulated adenosine triphosphatase reaction of the erythrocyte membrane. Proc Natl Acad Sci U S A. 1972 May;69(5):1216–1220. doi: 10.1073/pnas.69.5.1216. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bender W. W., Garan H., Berg H. C. Proteins of the human erythrocyte membrane as modified by pronase. J Mol Biol. 1971 Jun 28;58(3):783–797. doi: 10.1016/0022-2836(71)90040-4. [DOI] [PubMed] [Google Scholar]
  6. Berg H. C. Sulfanilic acid diazonium salt: a label for the outside of the human erythrocyte membrane. Biochim Biophys Acta. 1969 Jun 3;183(1):65–78. doi: 10.1016/0005-2736(69)90130-8. [DOI] [PubMed] [Google Scholar]
  7. Blumenfeld O. O., Gallop P. M., Liao T. H. Modification and introduction of a specific radioactive label into the erythrocyte membrane sialoglycoproteins. Biochem Biophys Res Commun. 1972 Jul 11;48(1):242–251. doi: 10.1016/0006-291x(72)90369-5. [DOI] [PubMed] [Google Scholar]
  8. Boxer D. H., Jenkins R. E., Tanner M. J. The organization of the major protein of the human erythrocyte membrane. Biochem J. 1974 Mar;137(3):531–534. doi: 10.1042/bj1370531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Bretscher M. S. A major protein which spans the human erythrocyte membrane. J Mol Biol. 1971 Jul 28;59(2):351–357. doi: 10.1016/0022-2836(71)90055-6. [DOI] [PubMed] [Google Scholar]
  10. Bretscher M. S. Human erythrocyte membranes: specific labelling of surface proteins. J Mol Biol. 1971 Jun 28;58(3):775–781. doi: 10.1016/0022-2836(71)90039-8. [DOI] [PubMed] [Google Scholar]
  11. Bretscher M. S. Major human erythrocyte glycoprotein spans the cell membrane. Nat New Biol. 1971 Jun 23;231(25):229–232. doi: 10.1038/newbio231229a0. [DOI] [PubMed] [Google Scholar]
  12. Bretscher M. S. Membrane structure: some general principles. Science. 1973 Aug 17;181(4100):622–629. doi: 10.1126/science.181.4100.622. [DOI] [PubMed] [Google Scholar]
  13. Bretscher M. S. On labelling membranes. Nat New Biol. 1973 Sep 26;245(143):116–117. doi: 10.1038/newbio245116a0. [DOI] [PubMed] [Google Scholar]
  14. Cabantchik Z. I., Rothstein A. Membrane proteins related to anion permeability of human red blood cells. I. Localization of disulfonic stilbene binding sites in proteins involved in permeation. J Membr Biol. 1974;15(3):207–226. doi: 10.1007/BF01870088. [DOI] [PubMed] [Google Scholar]
  15. Cabantchik Z. I., Rothstein A. Membrane proteins related to anion permeability of human red blood cells. II. Effects of proteolytic enzymes on disulfonic stilbene sites of surface proteins. J Membr Biol. 1974;15(3):227–248. doi: 10.1007/BF01870089. [DOI] [PubMed] [Google Scholar]
  16. Cabantchik Z. I., Rothstein A. The nature of the membrane sites controlling anion permeability of human red blood cells as determined by studies with disulfonic stilbene derivatives. J Membr Biol. 1972 Dec 29;10(3):311–330. doi: 10.1007/BF01867863. [DOI] [PubMed] [Google Scholar]
  17. Capaldi R. A. A cross-linking study of the beef erythrocyte membrane: extensive interaction of all the proteins of the membrane except for the glycoproteins. Biochem Biophys Res Commun. 1973 Feb 5;50(3):656–661. doi: 10.1016/0006-291x(73)91294-1. [DOI] [PubMed] [Google Scholar]
  18. Capaldi R. A., Green D. E. Membrane proteins and membrane structure. FEBS Lett. 1972 Sep 15;25(2):205–209. doi: 10.1016/0014-5793(72)80486-1. [DOI] [PubMed] [Google Scholar]
  19. Carraway K. L., Kobylka D. Comparative studies of erythrocyte membranes by gel electrophoresis. Biochim Biophys Acta. 1970;219(1):238–241. doi: 10.1016/0005-2736(70)90081-7. [DOI] [PubMed] [Google Scholar]
  20. Carraway K. L., Kobylka D., Summers J., Carraway C. A. Chemical modification of erythrocyte membranes: double labeling with acetic anhydride. Chem Phys Lipids. 1972 Jan;8(1):65–81. doi: 10.1016/0009-3084(72)90044-8. [DOI] [PubMed] [Google Scholar]
  21. Carraway K. L., Kobylka D., Triplett R. B. Surface proteins of erythrocyte membranes. Biochim Biophys Acta. 1971 Sep 14;241(3):934–940. doi: 10.1016/0005-2736(71)90026-5. [DOI] [PubMed] [Google Scholar]
  22. Carter J. R., Jr Role of sulfhydryl groups in erythrocyte membrane structure. Biochemistry. 1973 Jan 2;12(1):171–176. doi: 10.1021/bi00725a028. [DOI] [PubMed] [Google Scholar]
  23. Clarke M. Isolation and characterization of a water-soluble protein from bovine erythrocyte membranes. Biochem Biophys Res Commun. 1971 Nov;45(4):1063–1070. doi: 10.1016/0006-291x(71)90445-1. [DOI] [PubMed] [Google Scholar]
  24. Cone R. A. Rotational diffusion of rhodopsin in the visual receptor membrane. Nat New Biol. 1972 Mar 15;236(63):39–43. doi: 10.1038/newbio236039a0. [DOI] [PubMed] [Google Scholar]
  25. DODGE J. T., MITCHELL C., HANAHAN D. J. The preparation and chemical characteristics of hemoglobin-free ghosts of human erythrocytes. Arch Biochem Biophys. 1963 Jan;100:119–130. doi: 10.1016/0003-9861(63)90042-0. [DOI] [PubMed] [Google Scholar]
  26. DePierre J. W., Karnovsky M. L. Ecto-enzyme of granulocytes: 5'-nucleotidase. Science. 1974 Mar 15;183(4129):1096–1098. doi: 10.1126/science.183.4129.1096. [DOI] [PubMed] [Google Scholar]
  27. EYLAR E. H., MADOFF M. A., BRODY O. V., ONCLEY J. L. The contribution of sialic acid to the surface charge of the erythrocyte. J Biol Chem. 1962 Jun;237:1992–2000. [PubMed] [Google Scholar]
  28. Evans E. A. A new material concept for the red cell membrane. Biophys J. 1973 Sep;13(9):926–940. doi: 10.1016/S0006-3495(73)86035-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Evans E. A. New membrane concept applied to the analysis of fluid shear- and micropipette-deformed red blood cells. Biophys J. 1973 Sep;13(9):941–954. doi: 10.1016/S0006-3495(73)86036-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. FIRKIN B. G., BEAL R. W., MITCHELL G. The effects of trypsin and chymotrypsin on the acetylcholinesterase content of human erythrocytes. Australas Ann Med. 1963 Feb;12:26–29. doi: 10.1111/imj.1963.12.1.26. [DOI] [PubMed] [Google Scholar]
  31. Fairbanks G., Avruch J. Four gel systems for electrophoretic fractionation of membrane proteins using ionic detergents. J Supramol Struct. 1972;1(1):66–75. doi: 10.1002/jss.400010110. [DOI] [PubMed] [Google Scholar]
  32. Fairbanks G., Steck T. L., Wallach D. F. Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry. 1971 Jun 22;10(13):2606–2617. doi: 10.1021/bi00789a030. [DOI] [PubMed] [Google Scholar]
  33. Fukuda M., Osawa T. Isolation and characterization of a glycoprotein from human group O erythrocyte membrane. J Biol Chem. 1973 Jul 25;248(14):5100–5105. [PubMed] [Google Scholar]
  34. Graham J. M., Wallach D. F. Protein conformational transitions in the erythrocyte membrane. Biochim Biophys Acta. 1971 Jul 6;241(1):180–194. doi: 10.1016/0005-2736(71)90315-4. [DOI] [PubMed] [Google Scholar]
  35. Green D. E., Haard N. F., Lenaz G., Silman H. I. On the noncatalytic proteins of membrane systems. Proc Natl Acad Sci U S A. 1968 May;60(1):277–284. doi: 10.1073/pnas.60.1.277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Guidotti G. Membrane proteins. Annu Rev Biochem. 1972;41:731–752. doi: 10.1146/annurev.bi.41.070172.003503. [DOI] [PubMed] [Google Scholar]
  37. Guidotti G. The composition of biological membranes. Arch Intern Med. 1972 Feb;129(2):194–201. [PubMed] [Google Scholar]
  38. Guthrow C. E., Jr, Allen J. E., Rasmussen H. Phosphorylation of an endogenous membrane protein by an endogenous, membrane-associated cyclic adenosine 3',5'-monophosphate-dependent protein kinase in human erythrocyte ghosts. J Biol Chem. 1972 Dec 25;247(24):8145–8153. [PubMed] [Google Scholar]
  39. Guthrow C. E., Rasmussen H., Brunswick D. J., Cooperman B. S. Specific photoaffinity labeling of the adenosine 3':5'-cyclic monophosphate receptor in intact ghosts from human erythrocytes. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3344–3346. doi: 10.1073/pnas.70.12.3344. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Gwynne J. T., Tanford C. A polypeptide chain of very high molecular weight from red blood cell membranes. J Biol Chem. 1970 Jun;245(12):3269–3273. [PubMed] [Google Scholar]
  41. Hamaguchi H., Cleve H. Solubilization and comparative analysis of mammalian erythrocyte membrane glycoproteins. Biochem Biophys Res Commun. 1972 Apr 28;47(2):459–464. doi: 10.1016/0006-291x(72)90736-x. [DOI] [PubMed] [Google Scholar]
  42. Heidrich H. G., Leutner G. Two types of vesicles from the erythrocyte-ghost membrane differing in surface charge. Separation and characterization by preparative free-flow electrophoresis. Eur J Biochem. 1974 Jan 3;41(1):37–43. doi: 10.1111/j.1432-1033.1974.tb03241.x. [DOI] [PubMed] [Google Scholar]
  43. Hoffman J. F. The red cell membrane and the transport of sodium and potassium. Am J Med. 1966 Nov;41(5):666–680. doi: 10.1016/0002-9343(66)90029-5. [DOI] [PubMed] [Google Scholar]
  44. Hubbard A. L., Cohn Z. A. The enzymatic iodination of the red cell membrane. J Cell Biol. 1972 Nov;55(2):390–405. doi: 10.1083/jcb.55.2.390. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Hulla F. W., Gratzer W. B. Association of high-molecular weight proteins in the red cell membrane. FEBS Lett. 1972 Sep 15;25(2):275–278. doi: 10.1016/0014-5793(72)80502-7. [DOI] [PubMed] [Google Scholar]
  46. Jacob H., Amsden T., White J. Membrane microfilaments of erythrocytes: alteration in intact cells reproduces the hereditary spherocytosis syndrome (vinblastine-colchicine-strychnine-electron microscopy-cell rigidity). Proc Natl Acad Sci U S A. 1972 Feb;69(2):471–474. doi: 10.1073/pnas.69.2.471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Ji T. H. Crosslinking of the glycoproteins in human erythrocyte membranes. Proc Natl Acad Sci U S A. 1974 Jan;71(1):93–95. doi: 10.1073/pnas.71.1.93. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Juliano R. L. The proteins of the erythrocyte membrane. Biochim Biophys Acta. 1973 Dec 28;300(4):341–378. doi: 10.1016/0304-4157(73)90013-0. [DOI] [PubMed] [Google Scholar]
  49. Kagawa Y. Reconstitution of oxidative phosphorylation. Biochim Biophys Acta. 1972 Aug 4;265(3):297–338. [PubMed] [Google Scholar]
  50. Kahlenberg A., Urman B., Dolansky D. Preferential uptake of D-glucose by isolated human erythrocyte membranes. Biochemistry. 1971 Aug 3;10(16):3154–3162. doi: 10.1021/bi00792a027. [DOI] [PubMed] [Google Scholar]
  51. Kant J. A., Steck T. L. Adenosine 3',5' monophosphate binds only to the inner surface of human erythrocyte membranes. Biochem Biophys Res Commun. 1973 Sep 5;54(1):116–122. doi: 10.1016/0006-291x(73)90896-6. [DOI] [PubMed] [Google Scholar]
  52. Kant J. A., Steck T. L. Cation-impermeable inside-out and right-side-out vesicles from human erythrocyte membranes. Nat New Biol. 1972 Nov 1;240(96):26–28. doi: 10.1038/newbio240026a0. [DOI] [PubMed] [Google Scholar]
  53. Kant J. A., Steck T. L. Specificity in the association of glyceraldehyde 3-phosphate dehydrogenase with isolated human erythrocyte membranes. J Biol Chem. 1973 Dec 25;248(24):8457–8464. [PubMed] [Google Scholar]
  54. Kirkpatrick F. H., LaCelle P. L. Comparison of preparations of erythrocyte membranes and membrane proteins by SDS-gel electrophoresis. Experientia. 1974 Feb 15;30(2):140–142. doi: 10.1007/BF01927694. [DOI] [PubMed] [Google Scholar]
  55. Knufermann H., Bhakdi S., Schmidt-Ullrich R., Wallach D. F. N-terminal amino acid analysis reveal peptide heterogeneity in major electrophoretic protein components of erythrocyte ghosts. Biochim Biophys Acta. 1973 Dec 22;330(3):356–361. doi: 10.1016/0005-2736(73)90246-0. [DOI] [PubMed] [Google Scholar]
  56. Knüfermann H., Fischer H., Wallach D. F.H. Peptide cleavage in sheep erythrocyte membranes during the action of complement. FEBS Lett. 1971 Aug 15;16(3):167–171. doi: 10.1016/0014-5793(71)80123-0. [DOI] [PubMed] [Google Scholar]
  57. Kobylka D., Khettry A., Shin B. C., Carraway K. L. Proteins and glycoproteins of the erythrocyte membrane. Arch Biochem Biophys. 1972 Feb;148(2):475–487. doi: 10.1016/0003-9861(72)90166-x. [DOI] [PubMed] [Google Scholar]
  58. Koch P. A., Gardner F. H., Carter J. R., Jr Red cell maturation: loss of a reticulocyte-specific membrane protein. Biochem Biophys Res Commun. 1973 Oct 15;54(4):1296–1299. doi: 10.1016/0006-291x(73)91128-5. [DOI] [PubMed] [Google Scholar]
  59. Kyte J. Properties of the two polypeptides of sodium- and potassium-dependent adenosine triphosphatase. J Biol Chem. 1972 Dec 10;247(23):7642–7649. [PubMed] [Google Scholar]
  60. Lane L. K., Copenhaver J. H., Jr, Lindenmayer G. E., Schwartz A. Purification and characterization of and (3H)ouabain binding to the transport adenosine triphosphatase from outer medulla of canine kidney. J Biol Chem. 1973 Oct 25;248(20):7197–7200. [PubMed] [Google Scholar]
  61. Lenard J. Protein and glycolipid components of human erythrocyte membranes. Biochemistry. 1970 Mar 3;9(5):1129–1132. doi: 10.1021/bi00807a012. [DOI] [PubMed] [Google Scholar]
  62. Lenard J. Protein components of erythrocyte membranes from different animal species. Biochemistry. 1970 Dec 8;9(25):5037–5040. doi: 10.1021/bi00827a032. [DOI] [PubMed] [Google Scholar]
  63. Maddy A. H. The properties of the protein of the plasma membrane of ox erythrocytes. Biochim Biophys Acta. 1966 Mar 28;117(1):193–200. doi: 10.1016/0304-4165(66)90166-8. [DOI] [PubMed] [Google Scholar]
  64. Marchesi S. L., Steers E., Marchesi V. T., Tillack T. W. Physical and chemical properties of a protein isolated from red cell membranes. Biochemistry. 1970 Jan 6;9(1):50–57. doi: 10.1021/bi00803a007. [DOI] [PubMed] [Google Scholar]
  65. Marchesi V. T., Palade G. E. The localization of Mg-Na-K-activated adenosine triphosphatase on red cell ghost membranes. J Cell Biol. 1967 Nov;35(2):385–404. doi: 10.1083/jcb.35.2.385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Marchesi V. T., Steers E., Jr Selective solubilization of a protein component of the red cell membrane. Science. 1968 Jan 12;159(3811):203–204. doi: 10.1126/science.159.3811.203. [DOI] [PubMed] [Google Scholar]
  67. Marchesi V. T., Tillack T. W., Jackson R. L., Segrest J. P., Scott R. E. Chemical characterization and surface orientation of the major glycoprotein of the human erythrocyte membrane. Proc Natl Acad Sci U S A. 1972 Jun;69(6):1445–1449. doi: 10.1073/pnas.69.6.1445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Martin K. The effect of proteolytic enzymes on acetylcholinesterase activity, the sodium pump and choline transport in human erythrocytes. Biochim Biophys Acta. 1970 Mar 17;203(1):182–184. doi: 10.1016/0005-2736(70)90051-9. [DOI] [PubMed] [Google Scholar]
  69. Marton L. S., Garvin L. E. Subunit structure of the major human erythrocytes glycoprotein: depolymerization by heating ghosts with sodium dodecyl sulfate. Biochem Biophys Res Commun. 1973 Jun 19;52(4):1457–1462. doi: 10.1016/0006-291x(73)90664-5. [DOI] [PubMed] [Google Scholar]
  70. McNamee M. G., McConnell H. M. Transmembrane potentials and phospholipid flip-flop in excitable membrane vesicles. Biochemistry. 1973 Jul 31;12(16):2951–2958. doi: 10.1021/bi00740a001. [DOI] [PubMed] [Google Scholar]
  71. Mitchell C. D., Mitchell W. B., Hanahan D. J. Enzyme and hemoglobin retention in human erythrocyte stroma. Biochim Biophys Acta. 1965 Jul 8;104(2):348–358. doi: 10.1016/0304-4165(65)90340-5. [DOI] [PubMed] [Google Scholar]
  72. Morrison M., Mueller T. J., Huber C. T. Transmembrane orientation of the glycoproteins in normal human erythrocytes. J Biol Chem. 1974 Apr 25;249(8):2658–2660. [PubMed] [Google Scholar]
  73. Nicolson G. L. Anionic sites of human erythrocyte membranes. I. Effects of trypsin, phospholipase C, and pH on the topography of bound positively charged colloidal particles. J Cell Biol. 1973 May;57(2):373–387. doi: 10.1083/jcb.57.2.373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Nicolson G. L. Cis- and trans-membrane control of cell surface topography. J Supramol Struct. 1973;1(4):410–416. doi: 10.1002/jss.400010419. [DOI] [PubMed] [Google Scholar]
  75. Nicolson G. L., Marchesi V. T., Singer S. J. The localization of spectrin on the inner surface of human red blood cell membranes by ferritin-conjugated antibodies. J Cell Biol. 1971 Oct;51(1):265–272. doi: 10.1083/jcb.51.1.265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Nicolson G. L., Painter R. G. Anionic sites of human erythrocyte membranes. II. Antispectrin-induced transmembrane aggregation of the binding sites for positively charged colloidal particles. J Cell Biol. 1973 Nov;59(2 Pt 1):395–406. doi: 10.1083/jcb.59.2.395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Nicolson G. L., Singer S. J. Ferritin-conjugated plant agglutinins as specific saccharide stains for electron microscopy: application to saccharides bound to cell membranes. Proc Natl Acad Sci U S A. 1971 May;68(5):942–945. doi: 10.1073/pnas.68.5.942. [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Nicolson G. L., Singer S. J. The distribution and asymmetry of mammalian cell surface saccharides utilizing ferritin-conjugated plant agglutinins as specific saccharide stains. J Cell Biol. 1974 Jan;60(1):236–248. doi: 10.1083/jcb.60.1.236. [DOI] [PMC free article] [PubMed] [Google Scholar]
  79. Oguchi M. Glyceraldehyde-3-phosphate dehydrogenases from human erythrocytes. J Biochem. 1970 Oct;68(4):427–439. doi: 10.1093/oxfordjournals.jbchem.a129373. [DOI] [PubMed] [Google Scholar]
  80. Palmer F. B., Verpoorte J. A. The phosphorus components of solubilized erythrocyte membrane protein. Can J Biochem. 1971 Mar;49(3):337–347. doi: 10.1139/o71-050. [DOI] [PubMed] [Google Scholar]
  81. Penniston J. T., Green D. E. The conformational basis of energy transformations in membrane systems. IV. Energized states and pinocytosis in erythrocyte ghosts. Arch Biochem Biophys. 1968 Nov;128(2):339–350. doi: 10.1016/0003-9861(68)90040-4. [DOI] [PubMed] [Google Scholar]
  82. Perrone J. R., Blostein R. Asymmetric interaction of inside-out and right-side-out erythrocyte membrane vesicles with ouabain. Biochim Biophys Acta. 1973 Feb 16;291(3):680–689. doi: 10.1016/0005-2736(73)90473-2. [DOI] [PubMed] [Google Scholar]
  83. Phillips D. R., Morrison M. Exposed protein on the intact human erythrocyte. Biochemistry. 1971 May 11;10(10):1766–1771. doi: 10.1021/bi00786a006. [DOI] [PubMed] [Google Scholar]
  84. Phillips D. R., Morrison M. Exterior proteins on the human erythrocyte membrane. Biochem Biophys Res Commun. 1971 Nov;45(4):1103–1108. doi: 10.1016/0006-291x(71)90451-7. [DOI] [PubMed] [Google Scholar]
  85. Phillips D. R., Morrison M. The arrangement of proteins in the human erythrocyte membrane. Biochem Biophys Res Commun. 1970 Jul 27;40(2):284–289. doi: 10.1016/0006-291x(70)91007-7. [DOI] [PubMed] [Google Scholar]
  86. Pinto da Silva P., Douglas S. D., Branton D. Localization of A antigen sites on human erythrocyte ghosts. Nature. 1971 Jul 16;232(5307):194–196. doi: 10.1038/232194a0. [DOI] [PubMed] [Google Scholar]
  87. Razin S. Reconstruction of biological membranes. Biochim Biophys Acta. 1972 Apr 18;265(2):241–296. [PubMed] [Google Scholar]
  88. Rega A. F., Weed R. I., Reed C. F., Berg G. G., Rothstein A. Changes in the properties of human erythrocyte membrane protein after solubilization by butanol extraction. Biochim Biophys Acta. 1967 Oct 23;147(2):297–312. doi: 10.1016/0005-2795(67)90408-4. [DOI] [PubMed] [Google Scholar]
  89. Reichstein E., Blostein R. Asymmetric iodination of the human erythrocyte membrane. Biochem Biophys Res Commun. 1973 Sep 18;54(2):494–500. doi: 10.1016/0006-291x(73)91448-4. [DOI] [PubMed] [Google Scholar]
  90. Robertson J. D. The structure of biological membranes. Current status. Arch Intern Med. 1972 Feb;129(2):202–228. [PubMed] [Google Scholar]
  91. Rosenberg S. A., Guidotti G. The protein of human erythrocyte membranes. I. Preparation, solubilization, and partial characterization. J Biol Chem. 1968 Apr 25;243(8):1985–1992. [PubMed] [Google Scholar]
  92. Rosenthal A. S., Kregenow F. M., Moses H. L. Some characteristics of a Ca2+ dependent ATPase activity associated with a group of erythrocyte membrane proteins which form fibrils. Biochim Biophys Acta. 1970;196(2):254–262. doi: 10.1016/0005-2736(70)90013-1. [DOI] [PubMed] [Google Scholar]
  93. Roses A. D., Appel S. H. Erythrocyte protein phosphorylation. J Biol Chem. 1973 Feb 25;248(4):1408–1411. [PubMed] [Google Scholar]
  94. Rubin C. S., Erlichman J., Rosen O. M. Cyclic adenosine 3',5'-monophosphate-dependent protein kinase of human erythrocyte membranes. J Biol Chem. 1972 Oct 10;247(19):6135–6139. [PubMed] [Google Scholar]
  95. Rubin C. S., Rosen O. M. The role of cyclic AMP in the phosphorylation of proteins in human erythrocyte membranes. Biochem Biophys Res Commun. 1973 Jan 23;50(2):421–429. doi: 10.1016/0006-291x(73)90857-7. [DOI] [PubMed] [Google Scholar]
  96. Rubin C. S., Rosenfeld R. D., Rosen O. M. Studies on the orientation of cyclic AMP-dependent protein kinase in human erythrocyte membranes. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3735–3738. doi: 10.1073/pnas.70.12.3735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  97. STECK T. L., HOELZLWALLACH D. F. THE BINDING OF KIDNEY-BEAN PHYTOHEMAGGLUTININ BY EHRLICH ASCITES CARCINOMA. Biochim Biophys Acta. 1965 Mar 8;97:510–522. [PubMed] [Google Scholar]
  98. Schiechl H. Investigation of HCl-extraction of human erythrocyte membranes. Biochim Biophys Acta. 1973 Apr 25;307(1):65–73. doi: 10.1016/0005-2736(73)90025-4. [DOI] [PubMed] [Google Scholar]
  99. Schmidt-Ullrich R., Knüfermann H., Wallach D. F. The reaction of 1-dimethylaminonaphthalene-5-sulfonyl chloride (DANSC1) with erythrocyte membranes. A new look at "vectorial" membrane probes. Biochim Biophys Acta. 1973 May 11;307(2):353–365. doi: 10.1016/0005-2736(73)90101-6. [DOI] [PubMed] [Google Scholar]
  100. Schneider D. L., Kagawa Y., Racker E. Chemical modification of the inner mitochondrial membrane. J Biol Chem. 1972 Jun 25;247(12):4074–4079. [PubMed] [Google Scholar]
  101. Schwoch G., Passow H. Preparation and properties of human erythrocyte ghosts. Mol Cell Biochem. 1973 Dec 15;2(2):197–218. doi: 10.1007/BF01795474. [DOI] [PubMed] [Google Scholar]
  102. Seeman P., Chau-Wong M., Moyyen S. Membrane expansion by vinblastine and strychnine. Nat New Biol. 1973 Jan 3;241(105):22–22. doi: 10.1038/newbio241022a0. [DOI] [PubMed] [Google Scholar]
  103. Segrest J. P., Jackson R. L., Marchesi V. T., Guyer R. B., Terry W. Red cell membrane glycoprotein: amino acid sequence of an intramembranous region. Biochem Biophys Res Commun. 1972 Nov 15;49(4):964–969. doi: 10.1016/0006-291x(72)90306-3. [DOI] [PubMed] [Google Scholar]
  104. Segrest J. P., Kahane I., Jackson R. L., Marchesi V. T. Major glycoprotein of the human erythrocyte membrane: evidence for an amphipathic molecular structure. Arch Biochem Biophys. 1973 Mar;155(1):167–183. doi: 10.1016/s0003-9861(73)80019-0. [DOI] [PubMed] [Google Scholar]
  105. Shin B. C., Carraway K. L. Association of glyceraldehyde 3-phosphate dehydrogenase with the human erythrocyte membrane. Effect of detergents, trypsin, and adenosine triphosphate. J Biol Chem. 1973 Feb 25;248(4):1436–1444. [PubMed] [Google Scholar]
  106. Singer S. J., Nicolson G. L. The fluid mosaic model of the structure of cell membranes. Science. 1972 Feb 18;175(4023):720–731. doi: 10.1126/science.175.4023.720. [DOI] [PubMed] [Google Scholar]
  107. Skalak R., Tozeren A., Zarda R. P., Chien S. Strain energy function of red blood cell membranes. Biophys J. 1973 Mar;13(3):245–264. doi: 10.1016/S0006-3495(73)85983-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  108. Steck T. L. Cross-linking the major proteins of the isolated erythrocyte membrane. J Mol Biol. 1972 May 14;66(2):295–305. doi: 10.1016/0022-2836(72)90481-0. [DOI] [PubMed] [Google Scholar]
  109. Steck T. L., Dawson G. Topographical distribution of complex carbohydrates in the erythrocyte membrane. J Biol Chem. 1974 Apr 10;249(7):2135–2142. [PubMed] [Google Scholar]
  110. Steck T. L., Fairbanks G., Wallach D. F. Disposition of the major proteins in the isolated erythrocyte membrane. Proteolytic dissection. Biochemistry. 1971 Jun 22;10(13):2617–2624. doi: 10.1021/bi00789a031. [DOI] [PubMed] [Google Scholar]
  111. Steck T. L., Kant J. A. Preparation of impermeable ghosts and inside-out vesicles from human erythrocyte membranes. Methods Enzymol. 1974;31:172–180. doi: 10.1016/0076-6879(74)31019-1. [DOI] [PubMed] [Google Scholar]
  112. Steck T. L. Selective solubilization of red blood cell membrane proteins with guanidine hydrochloride. Biochim Biophys Acta. 1972 Feb 11;255(2):553–556. doi: 10.1016/0005-2736(72)90158-7. [DOI] [PubMed] [Google Scholar]
  113. Steck T. L., Weinstein R. S., Straus J. H., Wallach D. F. Inside-out red cell membrane vesicles: preparation and purification. Science. 1970 Apr 10;168(3928):255–257. doi: 10.1126/science.168.3928.255. [DOI] [PubMed] [Google Scholar]
  114. Steck T. L., Yu J. Selective solubilization of proteins from red blood cell membranes by protein perturbants. J Supramol Struct. 1973;1(3):220–232. doi: 10.1002/jss.400010307. [DOI] [PubMed] [Google Scholar]
  115. Stoeckenius W., Engelman D. M. Current models for the structure of biological membranes. J Cell Biol. 1969 Sep;42(3):613–646. doi: 10.1083/jcb.42.3.613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  116. Tanner M. J., Boxer D. H. Separation and some properties of the major proteins of the human erythrocyte membrane. Biochem J. 1972 Sep;129(2):333–347. doi: 10.1042/bj1290333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  117. Tanner M. J., Gray W. R. The isolation and functional identification of a protein from the human erythrocyte 'ghost'. Biochem J. 1971 Dec;125(4):1109–1117. doi: 10.1042/bj1251109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  118. Tarone G., Prat M., Comoglio P. M. Affinity chromatography purification of erythrocyte membrane proteins after selective labeling with trinitrobenzene sodium sulfonate. Biochim Biophys Acta. 1973 Jun 22;311(2):214–221. doi: 10.1016/0005-2736(73)90268-x. [DOI] [PubMed] [Google Scholar]
  119. Taverna R. D., Langdon R. G. D-glucosyl isothiocyanate, an affinity label for the glucose transport proteins of the human erythrocyte membrane. Biochem Biophys Res Commun. 1973 Sep 18;54(2):593–599. doi: 10.1016/0006-291x(73)91464-2. [DOI] [PubMed] [Google Scholar]
  120. Taverna R. D., Langdon R. G. Reversible association of cytochalasin B with the human erythrocyte membrane. Inhibition of glucose transport and the stoichiometry of cytochalasin binding. Biochim Biophys Acta. 1973 Oct 11;323(2):207–219. doi: 10.1016/0005-2736(73)90145-4. [DOI] [PubMed] [Google Scholar]
  121. Tillack T. W., Marchesi S. L., Marchesi V. T., Steers E., Jr A comparative study of spectrin: a protein isolated from red blood cell membranes. Biochim Biophys Acta. 1970 Jan 20;200(1):125–131. doi: 10.1016/0005-2795(70)90050-4. [DOI] [PubMed] [Google Scholar]
  122. Tillack T. W., Scott R. E., Marchesi V. T. The structure of erythrocyte membranes studied by freeze-etching. II. Localization of receptors for phytohemagglutinin and influenza virus to the intramembranous particles. J Exp Med. 1972 Jun 1;135(6):1209–1227. doi: 10.1084/jem.135.6.1209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  123. Trayer H. R., Nozaki Y., Reynolds J. A., Tanford C. Polypeptide chains from human red blood cell membranes. J Biol Chem. 1971 Jul 25;246(14):4485–4488. [PubMed] [Google Scholar]
  124. Triplett R. B., Carraway K. L. Proteolytic digestion of erythrocytes, resealed ghosts, and isolated membranes. Biochemistry. 1972 Jul 18;11(15):2897–2903. doi: 10.1021/bi00765a024. [DOI] [PubMed] [Google Scholar]
  125. Triplett R. B., Wingate J. M., Carraway K. L. Calcium effects on erythrocyte membrane proteins. Biochem Biophys Res Commun. 1972 Nov 15;49(4):1014–1020. doi: 10.1016/0006-291x(72)90313-0. [DOI] [PubMed] [Google Scholar]
  126. WHITTAM R. The asymmetrical stimulation of a membrane adenosine triphosphatase in relation to active cation transport. Biochem J. 1962 Jul;84:110–118. doi: 10.1042/bj0840110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  127. Wallach D. F. The dispositions of proteins in the plasma membranes of animal cells: analytical approaches using controlled peptidolysis and protein labels. Biochim Biophys Acta. 1972 Feb 14;265(1):61–83. doi: 10.1016/0304-4157(72)90019-6. [DOI] [PubMed] [Google Scholar]
  128. Weed R. I., LaCelle P. L., Merrill E. W. Metabolic dependence of red cell deformability. J Clin Invest. 1969 May;48(5):795–809. doi: 10.1172/JCI106038. [DOI] [PMC free article] [PubMed] [Google Scholar]
  129. Williams R. O. The phosphorylation and isolation of two erythrocyte membrane proteins in vitro. Biochem Biophys Res Commun. 1972 May 26;47(4):671–678. doi: 10.1016/0006-291x(72)90544-x. [DOI] [PubMed] [Google Scholar]
  130. Yu J., Fischman D. A., Steck T. L. Selective solubilization of proteins and phospholipids from red blood cell membranes by nonionic detergents. J Supramol Struct. 1973;1(3):233–248. doi: 10.1002/jss.400010308. [DOI] [PubMed] [Google Scholar]
  131. Zahler P., Weibel E. R. Reconstitution of membranes by recombining proteins and lipids derived from erythrocyte stroma. Biochim Biophys Acta. 1970 Dec 1;219(2):320–338. doi: 10.1016/0005-2736(70)90210-5. [DOI] [PubMed] [Google Scholar]
  132. Zamudio I., Cellino M., Canessa-Fischer M. The relation between membrane structure and NADH: (acceptor) oxidoreductase activity of erythrocyte ghosts. Arch Biochem Biophys. 1969 Jan;129(1):336–345. doi: 10.1016/0003-9861(69)90184-2. [DOI] [PubMed] [Google Scholar]
  133. Zwaal R. F., Roelofsen B., Colley C. M. Localization of red cell membrane constituents. Biochim Biophys Acta. 1973 Sep 10;300(2):159–182. doi: 10.1016/0304-4157(73)90003-8. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES