Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1974 Sep 1;62(3):635–646. doi: 10.1083/jcb.62.3.635

STUDIES ON THE BIOGENESIS OF SMOOTH ENDOPLASMIC RETICULUM MEMBRANES IN HEPATOCYTES OF PHENOBARBITAL-TREATED RATS

II. The Site of Phospholipid Synthesis in the Initial Phase of Membrane Proliferation

Joan A Higgins 1
PMCID: PMC2109200  PMID: 4153086

Abstract

The specific activity of the acyltransferases of smooth microsomes of rat liver rose threefold by 12 h after injection of phenobarbital, while the activity of the acyltransferases of the rough microsomes rose slightly to peak at 3–4 h, and subsequently fell. The latter rise was abolished by treatment of the animal with actinomycin D or puromycin, while that of the smooth microsomes was unaffected. Incorporation of [14C]glycerol into phospholipid of smooth microsomes was elevated 100% by phenobarbital, while that of the rough microsomes was elevated 15%, and this could be accounted for by exchange between the microsomal phospholipids. The phospholipid/protein ratio of the smooth microsomes rose 1.5 times 3–4 h after injection of phenobarbital, while that of the rough microsomes fell slightly. The specific activity of NADPH cytochrome c reductase and NADPH diaphorase rose first in the rough microsomes, and subsequently in the smooth microsomes at a time coinciding with the return of the phospholipid/protein ratio to the control level. The rise in phospholipid/protein ratio was unaffected by actinomycin D or puromycin. These results indicate that the proliferating smooth membranes are the site of phospholipid synthesis, and that the phospholipid/protein ratio of these membranes may change independently.

Full Text

The Full Text of this article is available as a PDF (843.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ailhaud G. P., Vagelos P. R. Palmityl-acyl carrier protein as acyl donor for complex lipid biosynthesis in Escherichia coli. J Biol Chem. 1966 Aug 25;241(16):3866–3869. [PubMed] [Google Scholar]
  2. Arias I. M., Doyle D., Schimke R. T. Studies on the synthesis and degradation of proteins of the endoplasmic reticulum of rat liver. J Biol Chem. 1969 Jun 25;244(12):3303–3315. [PubMed] [Google Scholar]
  3. Brandes R., Shapiro B. Inhibition of phosphatidic acid phosphatase by palmitoyl-coA. Biochim Biophys Acta. 1967 Feb 14;137(1):202–204. doi: 10.1016/0005-2760(67)90030-6. [DOI] [PubMed] [Google Scholar]
  4. CONNEY A. H., DAVISON C., GASTEL R., BURNS J. J. Adaptive increases in drug-metabolizing enzymes induced by phenobarbital and other drugs. J Pharmacol Exp Ther. 1960 Sep;130:1–8. [PubMed] [Google Scholar]
  5. Chedid A., Nair V. Diurnal rhythm in endoplasmic reticulum of rat liver: electron microscopic study. Science. 1972 Jan 14;175(4018):176–179. doi: 10.1126/science.175.4018.176. [DOI] [PubMed] [Google Scholar]
  6. Dallner G., Siekevitz P., Palade G. E. Biogenesis of endoplasmic reticulum membranes. I. Structural and chemical differentiation in developing rat hepatocyte. J Cell Biol. 1966 Jul;30(1):73–96. doi: 10.1083/jcb.30.1.73. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dallner G., Siekevitz P., Palade G. E. Biogenesis of endoplasmic reticulum membranes. II. Synthesis of constitutive microsomal enzymes in developing rat hepatocyte. J Cell Biol. 1966 Jul;30(1):97–117. doi: 10.1083/jcb.30.1.97. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ernster L., Orrenius S. Substrate-induced synthesis of the hydroxylating enzyme system of liver microsomes. Fed Proc. 1965 Sep-Oct;24(5):1190–1199. [PubMed] [Google Scholar]
  9. Frye L. D., Edidin M. The rapid intermixing of cell surface antigens after formation of mouse-human heterokaryons. J Cell Sci. 1970 Sep;7(2):319–335. doi: 10.1242/jcs.7.2.319. [DOI] [PubMed] [Google Scholar]
  10. Glaumann H., Dallner G. Lipid composition and turnover of rough and smooth microsomal membranes in rat liver. J Lipid Res. 1968 Nov;9(6):720–729. [PubMed] [Google Scholar]
  11. Goldfine H., Ailhaud G. P., Vagelos P. R. Involvement of acyl carrier protein in acylation of glycerol 3-phosphate in Clostridium butyricum. II. Evidence for the participation of acyl thioesters of acyl carrier protein. J Biol Chem. 1967 Oct 10;242(19):4466–4475. [PubMed] [Google Scholar]
  12. Holtzman J. L., Gillette J. R. The effect of phenobarbital on the turnover of microsomal phospholipid in male and female rats. J Biol Chem. 1968 Jun 10;243(11):3020–3028. [PubMed] [Google Scholar]
  13. Jones A. L., Fawcett D. W. Hypertrophy of the agranular endoplasmic reticulum in hamster liver induced by phenobarbital (with a review on the functions of this organelle in liver). J Histochem Cytochem. 1966 Mar;14(3):215–232. doi: 10.1177/14.3.215. [DOI] [PubMed] [Google Scholar]
  14. Kalousek F., Morris N. R. Deoxyribonucleic acid methylase activity in rat spleen. J Biol Chem. 1968 May 10;243(9):2440–2442. [PubMed] [Google Scholar]
  15. Kornberg R. D., McConnell H. M. Lateral diffusion of phospholipids in a vesicle membrane. Proc Natl Acad Sci U S A. 1971 Oct;68(10):2564–2568. doi: 10.1073/pnas.68.10.2564. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kreibich G., Debey P., Sabatini D. D. Selective release of content from microsomal vesicles without membrane disassembly. I. Permeability changes induced by low detergent concentrations. J Cell Biol. 1973 Aug;58(2):436–462. doi: 10.1083/jcb.58.2.436. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kuriyama Y., Omura T., Siekevitz P., Palade G. E. Effects of phenobarbital on the synthesis and degradation of the protein components of rat liver microsomal membranes. J Biol Chem. 1969 Apr 25;244(8):2017–2026. [PubMed] [Google Scholar]
  18. Kuriyama Y., Omura T., Siekevitz P., Palade G. E. Effects of phenobarbital on the synthesis and degradation of the protein components of rat liver microsomal membranes. J Biol Chem. 1969 Apr 25;244(8):2017–2026. [PubMed] [Google Scholar]
  19. LANDS W. E., HART P. METABOLISM OF GLYCEROLIPIDS. VI. SPECIFICITIES OF ACYL COENZYME A: PHOSPHOLIPID ACYLTRANSFERASES. J Biol Chem. 1965 May;240:1905–1911. [PubMed] [Google Scholar]
  20. LANDS W. E., HART P. METABOLISM OF GLYCEROLIPIDS: V. METABOLISM OF PHOSPHATIDIC ACID. J Lipid Res. 1964 Jan;5:81–87. [PubMed] [Google Scholar]
  21. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  22. Mindich L. Membrane synthesis in Bacillus subtilis. II. Integration of membrane proteins in the absence of lipid synthesis. J Mol Biol. 1970 Apr 28;49(2):433–439. doi: 10.1016/0022-2836(70)90255-x. [DOI] [PubMed] [Google Scholar]
  23. Mårtensson E., Kanfer J. The conversion of L-glycerol-14-C 3-phosphate into phosphatidic acid by a solubilized preparation from rat brain. J Biol Chem. 1968 Feb 10;243(3):497–501. [PubMed] [Google Scholar]
  24. Orrenius S., Ericsson J. L. Enzyme-membrane relationship in phenobarbital induction of synthesis of drug-metabolizing enzyme system and proliferation of endoplasmic membranes. J Cell Biol. 1966 Feb;28(2):181–198. doi: 10.1083/jcb.28.2.181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Orrenius S., Ericsson J. L., Ernster L. Phenobarbital-induced synthesis of the microsomal drug-metabolizing enzyme system and its relationship to the proliferation of endoplasmic membranes. A morphological and biochemical study. J Cell Biol. 1965 Jun;25(3):627–639. doi: 10.1083/jcb.25.3.627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Pieringer R. A., Bonner H., Jr, Kunnes R. S. Biosynthesis of phosphatidic acid, lysophosphatidic acid, diglyceride, and triglyceride by fatty acyltransferase pathways in Escherichia coli. J Biol Chem. 1967 Jun 10;242(11):2719–2724. [PubMed] [Google Scholar]
  27. Possmayer F., Scherphof G. L., Dubbelman T. M., van Golde L. M., van Deenen L. L. Positional specificity of saturated and unsaturated fatty acids in phosphatidic acid from rat liver. Biochim Biophys Acta. 1969 Jan 21;176(1):95–110. doi: 10.1016/0005-2760(69)90078-2. [DOI] [PubMed] [Google Scholar]
  28. REMMER H., MERKER H. J. DRUG-INDUCED CHANGES IN THE LIVER ENDOPLASMIC RETICULUM: ASSOCIATION WITH DRUG-METABOLIZING ENZYMES. Science. 1963 Dec 27;142(3600):1657–1658. doi: 10.1126/science.142.3600.1657. [DOI] [PubMed] [Google Scholar]
  29. SNYDER F., STEPHENS N. A simplified spectrophotometric determination of ester groups in lipids. Biochim Biophys Acta. 1959 Jul;34:244–245. doi: 10.1016/0006-3002(59)90255-0. [DOI] [PubMed] [Google Scholar]
  30. Sargent J. R., Vadlamudi B. P. Characterization and biosynthesis of cytochrome b(5) in rat liver microsomes. Biochem J. 1968 May;107(6):839–849. doi: 10.1042/bj1070839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Scandella C. J., Devaux P., McConnell H. M. Rapid lateral diffusion of phospholipids in rabbit sarcoplasmic reticulum. Proc Natl Acad Sci U S A. 1972 Aug;69(8):2056–2060. doi: 10.1073/pnas.69.8.2056. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Singer S. J., Nicolson G. L. The fluid mosaic model of the structure of cell membranes. Science. 1972 Feb 18;175(4023):720–731. doi: 10.1126/science.175.4023.720. [DOI] [PubMed] [Google Scholar]
  33. Young D. L., Powell G., McMillan W. O. Phenobarbital-induced alterations in phosphatidylcholine and triglyceride synthesis in hepatic endoplasmic reticulum. J Lipid Res. 1971 Jan;12(1):1–8. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES