Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1974 Sep 1;62(3):755–766. doi: 10.1083/jcb.62.3.755

SUBSTRUCTURE OF AMPHIBIAN MOTOR END PLATE

Evidence for a Granular Component Projecting from the Outer Surface of the Receptive Membrane

Jack Rosenbluth 1
PMCID: PMC2109205  PMID: 4369247

Abstract

End-plate membrane has been examined at amphibian myoneural junctions by means of transmission electron microscopy of thin tissue sections. The postjunctional membrane exhibits morphologically specialized dense, convex patches which are located superficially facing the axon terminal but do not extend into the depths of the junctional folds. In the specialized regions the plasma membrane is ∼ 120 Å thick and trilaminar. The outer dense lamina is thickened by the presence in it of granular elements ∼60–120 Å in diameter which are spaced semiregularly at ∼100–150-Å intervals and which border the junctional cleft directly. In these regions the concentration of the granules is of the order of ∼ 104/µm2, which is in the same range as the estimated concentration of receptor sites at other vertebrate cholinergic junctions. Filamentous projections can sometimes be seen extending from the granules to the overlying basement membrane, and in oblique views a reticular pattern may appear both in these patches and in the basement membrane. The cytoplasmic surface of the specialized membrane is covered with an amorphous and filamentous dense material whose distribution coincides with that of the granules visible in the outer layer and which may be connected to them across the membrane. In unosmicated specimens stained with permanganate and uranyl acetate the specialized regions exhibit the same morphological features but stand out sharply in contrast to adjacent areas of unspecialized membrane which appear only faintly. Such preparations are particularly useful in assessing the extent of the specialized membrane. It is proposed that the granules visible at the outer surface of the end-plate membrane represent acetylcholine receptors and that in amphibians, as in annelids, the receptors at myoneural junctions are concentrated into patches which occupy less than the total postjunctional membrane surface area.

Full Text

The Full Text of this article is available as a PDF (1.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BIRKS R., HUXLEY H. E., KATZ B. The fine structure of the neuromuscular junction of the frog. J Physiol. 1960 Jan;150:134–144. doi: 10.1113/jphysiol.1960.sp006378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Betz W., Sakmann B. "Disjunction" of frog neuromuscular synapses by treatment with proteolytic enzymes. Nat New Biol. 1971 Jul 21;232(29):94–95. doi: 10.1038/newbio232094a0. [DOI] [PubMed] [Google Scholar]
  3. Bourgeois J. -P., Ryter A., Menez A., Fromageot P., Boquet P., Changeux J. -P. Localization of the cholinergic receptor protein in Electrophorus electroplax by high resolution autoradiography. FEBS Lett. 1972 Sep 1;25(1):127–133. doi: 10.1016/0014-5793(72)80469-1. [DOI] [PubMed] [Google Scholar]
  4. Cartaud J., Benedetti E. L., Cohen J. B., Meunier J. C., Changeux J. P. Presence of a lattice structure in membrane fragments rich in nicotinic receptor protein from the electric organ of Torpedo marmorata. FEBS Lett. 1973 Jun 15;33(1):109–113. doi: 10.1016/0014-5793(73)80171-1. [DOI] [PubMed] [Google Scholar]
  5. Davis R., Koelle G. B. Electron microscopic localization of acetylcholinesterase and nonspecific cholinesterase at the neuromuscular junction by the gold-thiocholine and gold-thiolacetic acid methods. J Cell Biol. 1967 Jul;34(1):157–171. doi: 10.1083/jcb.34.1.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. FRANKENHAEUSER B., HODGKIN A. L. The after-effects of impulses in the giant nerve fibres of Loligo. J Physiol. 1956 Feb 28;131(2):341–376. doi: 10.1113/jphysiol.1956.sp005467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hess A. The sarcoplasmic reticulum, the T system, and the motor terminals of slow and twitch muscle fibers in the garter snake. J Cell Biol. 1965 Aug;26(2):467–476. doi: 10.1083/jcb.26.2.467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Heuser J. E., Reese T. S. Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction. J Cell Biol. 1973 May;57(2):315–344. doi: 10.1083/jcb.57.2.315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hirano H. Ultrastructural study on the morphogenesis of the neuromuscular junction in the skeletal muscle of the chick. Z Zellforsch Mikrosk Anat. 1967;79(2):198–208. [PubMed] [Google Scholar]
  10. Lentz T. L. Development of the neuromuscular junction. I. Cytological and cytochemical studies on the neuromuscular junction of differentiating muscle in the regenerating limb of the newt Triturus. J Cell Biol. 1969 Aug;42(2):431–443. doi: 10.1083/jcb.42.2.431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Marchesi V. T., Tillack T. W., Jackson R. L., Segrest J. P., Scott R. E. Chemical characterization and surface orientation of the major glycoprotein of the human erythrocyte membrane. Proc Natl Acad Sci U S A. 1972 Jun;69(6):1445–1449. doi: 10.1073/pnas.69.6.1445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Meunier J. C., Olsen R. W., Changeux J. P. Studies on the cholinergic receptor protein from Electrophorus electricus. Effect of detergents on some hydrodynamic properties of the receptor protein in solution. FEBS Lett. 1972 Jul 15;24(1):63–68. doi: 10.1016/0014-5793(72)80827-5. [DOI] [PubMed] [Google Scholar]
  13. Miledi R., Potter L. T. Acetylcholine receptors in muscle fibres. Nature. 1971 Oct 29;233(5322):599–603. doi: 10.1038/233599a0. [DOI] [PubMed] [Google Scholar]
  14. Nickel E., Potter L. T. Ultrastructure of isolated membranes of Torpedo electric tissue. Brain Res. 1973 Jul 27;57(2):508–517. doi: 10.1016/0006-8993(73)90158-3. [DOI] [PubMed] [Google Scholar]
  15. Page S. G. A comparison of the fine structures of frog slow and twitch muscle fibers. J Cell Biol. 1965 Aug;26(2):477–497. doi: 10.1083/jcb.26.2.477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. ROBERTSON J. D. The ultrastructure of a reptilian myoneural junction. J Biophys Biochem Cytol. 1956 Jul 25;2(4):381–394. doi: 10.1083/jcb.2.4.381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. ROBERTSON J. D. The ultrastructure of cell membranes and their derivatives. Biochem Soc Symp. 1959;16:3–43. [PubMed] [Google Scholar]
  18. Rosenbluth J. Membrane specialization at an insect myoneural junction. J Cell Biol. 1973 Oct;59(1):143–149. doi: 10.1083/jcb.59.1.143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Rosenbluth J. Myoneural junctions of two ultrastructurally distinct types in earthworm body wall muscle. J Cell Biol. 1972 Sep;54(3):566–579. doi: 10.1083/jcb.54.3.566. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Rosenbluth J. Postjunctional membrane specialization at cholinergic myoneural junctions in the leech. J Comp Neurol. 1973 Oct 15;151(4):399–405. doi: 10.1002/cne.901510407. [DOI] [PubMed] [Google Scholar]
  21. Schmidt J., Raftery M. A. Purification of acetylcholine receptors from Torpedo californica electroplax by affinity chromatography. Biochemistry. 1973 Feb 27;12(5):852–856. doi: 10.1021/bi00729a011. [DOI] [PubMed] [Google Scholar]
  22. Teräväinen H. Development of the myoneural junction in the rat. Z Zellforsch Mikrosk Anat. 1968;87(2):249–265. doi: 10.1007/BF00319723. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES