Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1974 Sep 1;62(3):660–671. doi: 10.1083/jcb.62.3.660

FREEZE-FRACTURE OF MICROTUBULES AND BRIDGES IN MOTILE AXOSTYLES

Robert A Bloodgood 1, Kenneth R Miller 1
PMCID: PMC2109212  PMID: 4852092

Abstract

A freeze-fracture study of the motile axostyles of the flagellate protozoa Saccinobaculus and Pyrsonympha has been undertaken in order to obtain a view of the relationships of microtubules and their cross bridges not dependent on conventional preparative procedures. Reactivation studies using isolated axostyles prepared for freeze-fracture and then thawed demonstrate that we are observing the structure of a potentially functional axostyle. Cross fractures through the axostyle demonstrate more extensive interrow bridging than expected on the basis of observations of thin-sectioned material. Each microtubule has approximately sixfold bridge-binding sites with connections to as many as four interrow bridges. Measurements of microtubule diameter and spacing are significantly larger than those made from sectioned material and may indicate that conventional processing for electron microscopy results in the loss of structurally important water within the microtubule in addition to loss of intertubule material. Longitudinal fractures through the axostyle at various orientations demonstrate a minimum longitudinal periodicity of 160 Å for both the spacing of the globular subunits within the microtubule wall and the spacing of the intrarow bridges. While intrarow bridges are strictly periodic and always oriented in parallel, interrow bridges are not strictly periodic and can be oriented at varying angles to the microtubule axis.

Full Text

The Full Text of this article is available as a PDF (1.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bannister L. H. Lanthanum as an intracellular stain. J Microsc. 1972 Jun;95(3):413–419. doi: 10.1111/j.1365-2818.1972.tb01042.x. [DOI] [PubMed] [Google Scholar]
  2. Bischoff A., Moor H. The ultrastructure of the "difference factor" in the myelin. Z Zellforsch Mikrosk Anat. 1967;81(4):571–580. doi: 10.1007/BF00541015. [DOI] [PubMed] [Google Scholar]
  3. Bischoff A., Moor H. Ultrastructural differences between the myelin sheaths of peripheral nerve fibres and CNS white matter. Z Zellforsch Mikrosk Anat. 1967;81(3):303–310. doi: 10.1007/BF00342757. [DOI] [PubMed] [Google Scholar]
  4. Brugerolle G. Sur l'ultrastructure et la position systématique de Pyrsonympha vertens (Zooflagellata Pyrsonymphina) C R Acad Sci Hebd Seances Acad Sci D. 1970 Feb 16;270(7):966–969. [PubMed] [Google Scholar]
  5. Buckingham J. H., Staehelin L. A. The effect of glycerol on the structure of lecithin membranes; a study by freeze-etching and X-ray diffraction. J Microsc. 1969;90(2):83–106. doi: 10.1111/j.1365-2818.1969.tb00698.x. [DOI] [PubMed] [Google Scholar]
  6. Burton P. R., Fernandez H. L. Delineation by lanthanum staining of filamentous elements associated with the surfaces of axonal microtubules. J Cell Sci. 1973 Mar;12(2):567–583. doi: 10.1242/jcs.12.2.567. [DOI] [PubMed] [Google Scholar]
  7. Cohen C., Harrison S. C., Stephens R. E. X-ray diffraction from microtubules. J Mol Biol. 1971 Jul 28;59(2):375–380. doi: 10.1016/0022-2836(71)90057-x. [DOI] [PubMed] [Google Scholar]
  8. FERNANDEZ-MORAN H., FINEAN J. B. Electron microscope and low-angle x-ray diffraction studies of the nerve myelin sheath. J Biophys Biochem Cytol. 1957 Sep 25;3(5):725–748. doi: 10.1083/jcb.3.5.725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. GRIMSTONE A. V., CLEVELAND L. R. THE FINE STRUCTURE AND FUNCTION OF THE CONTRACTILE AXOSTYLES OF CERTAIN FLAGELLATES. J Cell Biol. 1965 Mar;24:387–400. doi: 10.1083/jcb.24.3.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Guth E., Hashimoto T., Conti S. F. Morphogenesis of ascospores in Saccharomyces cerevisiae. J Bacteriol. 1972 Feb;109(2):869–880. doi: 10.1128/jb.109.2.869-880.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lane N. J., Treherne J. E. Lanthanum staining of neurotubules in axons from cockroach ganglia. J Cell Sci. 1970 Jul;7(1):217–231. doi: 10.1242/jcs.7.1.217. [DOI] [PubMed] [Google Scholar]
  12. Ledbetter M. C., Porter K. R. Morphology of Microtubules of Plant Cell. Science. 1964 May 15;144(3620):872–874. doi: 10.1126/science.144.3620.872. [DOI] [PubMed] [Google Scholar]
  13. Leonard R., Deamer D. W., Armstrong P. Amphibian yolk platelet ultrastructure visualized by freeze-etching. J Ultrastruct Res. 1972 Jul;40(1):1–24. doi: 10.1016/s0022-5320(72)80019-4. [DOI] [PubMed] [Google Scholar]
  14. Macgregor H. C., Stebbings H. A massive system of microtubules associated with cytoplasmic movement in telotrophic ovarioles. J Cell Sci. 1970 Mar;6(2):431–449. doi: 10.1242/jcs.6.2.431. [DOI] [PubMed] [Google Scholar]
  15. McIntosh J. R., Ogata E. S., Landis S. C. The axostyle of Saccinobaculus. I. Structure of the organism and its microtubule bundle. J Cell Biol. 1973 Feb;56(2):304–323. doi: 10.1083/jcb.56.2.304. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. McIntosh J. R. The axostyle of Saccinobaculus. II. Motion of the microtubule bundle and a structural comparison of straight and bent axostyles. J Cell Biol. 1973 Feb;56(2):324–339. doi: 10.1083/jcb.56.2.324. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Moor H. Ultrastrukturen im Zellkern der Bäckerhefe. J Cell Biol. 1966 Apr;29(1):153–155. doi: 10.1083/jcb.29.1.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Mooseker M. S., Tilney L. G. Isolation and reactivation of the axostyle. Evidence for a dynein-like ATPase in the axostyle. J Cell Biol. 1973 Jan;56(1):13–26. doi: 10.1083/jcb.56.1.13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Northcote D. H., Lewis D. R. Freeze-etched surfaces of membranes and organelles in the cells of pea root tips. J Cell Sci. 1968 Jun;3(2):199–206. doi: 10.1242/jcs.3.2.199. [DOI] [PubMed] [Google Scholar]
  20. Olive J., Barbotin J. N., Risler J. L. The crystal and molecular structure of yeast L-lactate dehydrogenase (cytochrome b2). An electron microscopy study by negative staining and freeze-etching techniques. Int J Pept Protein Res. 1973;5(4):219–228. doi: 10.1111/j.1399-3011.1973.tb03456.x. [DOI] [PubMed] [Google Scholar]
  21. Silver M. D., McKinstry J. E. Morphology of microtubules in rabbit platelets. Z Zellforsch Mikrosk Anat. 1967;81(1):12–17. doi: 10.1007/BF00344548. [DOI] [PubMed] [Google Scholar]
  22. Stebbings H., Willison J. H. Structure of microtubules: a study of freeze-etched and negatively stained microtubules from the ovaries of Notonecta. Z Zellforsch Mikrosk Anat. 1973 Apr 17;138(3):387–396. doi: 10.1007/BF00307100. [DOI] [PubMed] [Google Scholar]
  23. Stephens R. E., Linck R. W. Comparison of muscle actin and ciliary microtubule protein in the mollusk Pecten irradians. J Mol Biol. 1969 Mar 28;40(3):497–501. doi: 10.1016/0022-2836(69)90168-5. [DOI] [PubMed] [Google Scholar]
  24. Tani E., Ametani T. Substructure of microtubules in brain nerve cells as revealed by ruthenium red. J Cell Biol. 1970 Jul;46(1):159–165. doi: 10.1083/jcb.46.1.159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Tilney L. G., Bryan J., Bush D. J., Fujiwara K., Mooseker M. S., Murphy D. B., Snyder D. H. Microtubules: evidence for 13 protofilaments. J Cell Biol. 1973 Nov;59(2 Pt 1):267–275. doi: 10.1083/jcb.59.2.267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Tucker J. B. Fine structure and function of the cytopharyngeal basket in the ciliate Nassula. J Cell Sci. 1968 Dec;3(4):493–514. doi: 10.1242/jcs.3.4.493. [DOI] [PubMed] [Google Scholar]
  27. Warner F. D., Satir P. The substructure of ciliary microtubules. J Cell Sci. 1973 Jan;12(1):313–326. doi: 10.1242/jcs.12.1.313. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES