Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1974 Sep 1;62(3):792–801. doi: 10.1083/jcb.62.3.792

GROWTH CONTROL OF DIFFERENTIATED FETAL RAT HEPATOCYTES IN PRIMARY MONOLAYER CULTURE

VII. Hormonal Control of DNA Synthesis and Its Possible Significance to the Problem of Liver Regeneration

H L Leffert 1
PMCID: PMC2109223  PMID: 4859345

Abstract

The initiation of DNA synthesis has been studied in quiescent primary cultures of fetal rat hepatocytes using defined hormones and chemically defined medium. Preparations of crystalline insulin (0.01–10 µg/ml) or 20,000-fold purified somatomedin (0.01–1 µg/ml) are stimulatory. Growth hormone (0.025 µg/ml) and hydroxycortisone (0.025 µg/ml), 3':5'-GMP! (10-5 M) fail by themselves to initiate DNA synthesis but added together with insulin, enhance the stimulatory response by 50–100%. Thyroid hormones (L-T3, L-T4, 7.5–30 ng/ml) are by themselves without effect, but when they are added to thyroid hormone-depleted serum, the reconstituted mixtures show an enhanced capacity to initiate DNA synthesis. In contrast, glucagon (0.01 µg/ml) inhibits the insulin-stimulated response by about 50% without reducing basal DNA synthesis rates. The results described here and in the accompanying two reports indicate that environmental control over the initiation of DNA synthesis is complex, and can involve the participation of many factors. The in vitro findings are consistent with the concept that liver regeneration is hormonally controlled and raise the possibility that alterations of the intrahepatic ratio of insulin to glucagon are growth regulatory.

Full Text

The Full Text of this article is available as a PDF (738.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adolfsson S., Isaksson O., Hjalmarson A. Effect of insulin on glycogen synthesis and synthetase enzyme activity in the perfused rat heart. Biochim Biophys Acta. 1972 Aug 18;279(1):146–156. doi: 10.1016/0304-4165(72)90249-8. [DOI] [PubMed] [Google Scholar]
  2. Alexander N. M., Jennings J. F. Analysis for total serum thyroxine by equilibrium competitive protein binding on small, re-usuable Sephadex columns. Clin Chem. 1974 May;20(5):553–559. [PubMed] [Google Scholar]
  3. Anthony L. E., Faloona G. R. Plasma insulin and glucagon levels in protein-malnourished rats. Metabolism. 1974 Apr;23(4):303–306. doi: 10.1016/0026-0495(74)90047-x. [DOI] [PubMed] [Google Scholar]
  4. Bretscher M. S. Membrane structure: some general principles. Science. 1973 Aug 17;181(4100):622–629. doi: 10.1126/science.181.4100.622. [DOI] [PubMed] [Google Scholar]
  5. Brown M. S., Dana S. E., Goldstein J. L. Regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in cultured human fibroblasts. Comparison of cells from a normal subject and from a patient with homozygous familial hypercholesterolemia. J Biol Chem. 1974 Feb 10;249(3):789–796. [PubMed] [Google Scholar]
  6. CANZANELLI A., RAPPORT D., GUILD R. Control of liver regeneration and nucleic acid content by the thyroid, with observations on the effects of pyrimidines. Am J Physiol. 1949 May;157(2):225–233. doi: 10.1152/ajplegacy.1949.157.2.225. [DOI] [PubMed] [Google Scholar]
  7. Cuatrecasas P. Interaction of insulin with the cell membrane: the primary action of insulin. Proc Natl Acad Sci U S A. 1969 Jun;63(2):450–457. doi: 10.1073/pnas.63.2.450. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Daughaday W. H., Hall K., Raben M. S., Salmon W. D., Jr, van den Brande J. L., van Wyk J. J. Somatomedin: proposed designation for sulphation factor. Nature. 1972 Jan 14;235(5333):107–107. doi: 10.1038/235107a0. [DOI] [PubMed] [Google Scholar]
  9. Dulak N. C., Temin H. M. A partially purified polypeptide fraction from rat liver cell conditioned medium with multiplication-stimulating activity for embryo fibroblasts. J Cell Physiol. 1973 Apr;81(2):153–160. doi: 10.1002/jcp.1040810204. [DOI] [PubMed] [Google Scholar]
  10. Dulbecco R. Topoinhibition and serum requirement of transformed and untransformed cells. Nature. 1970 Aug 22;227(5260):802–806. doi: 10.1038/227802a0. [DOI] [PubMed] [Google Scholar]
  11. Freychet P., Roth J., Neville D. M., Jr Insulin receptors in the liver: specific binding of ( 125 I)insulin to the plasma membrane and its relation to insulin bioactivity. Proc Natl Acad Sci U S A. 1971 Aug;68(8):1833–1837. doi: 10.1073/pnas.68.8.1833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Greene H. L., Taunton O. D., Stifel F. B., Herman R. H. The rapid changes of hepatic glycolytic enzymes and fructose-1,6-diphosphatase activities after intravenous glucagon in humans. J Clin Invest. 1974 Jan;53(1):44–51. doi: 10.1172/JCI107557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hadden J. W., Hadden E. M., Haddox M. K., Goldberg N. D. Guanosine 3':5'-cyclic monophosphate: a possible intracellular mediator of mitogenic influences in lymphocytes. Proc Natl Acad Sci U S A. 1972 Oct;69(10):3024–3027. doi: 10.1073/pnas.69.10.3024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hauschka P. V., Everhart L. P., Rubin R. W. Alteration of nucleoside transport of Chinese hamster cells by dibutyryl adenosine 3':5'-cyclic monophosphate. Proc Natl Acad Sci U S A. 1972 Dec;69(12):3542–3546. doi: 10.1073/pnas.69.12.3542. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Henderson I. C., Fischel R. E., Loeb J. N. Suppression of liver DNA synthesis by cortisone. Endocrinology. 1971 Jun;88(6):1471–1476. doi: 10.1210/endo-88-6-1471. [DOI] [PubMed] [Google Scholar]
  16. Illiano G., Tell G. P., Siegel M. E., Cuatrecasas P. Guanosine 3':5'-cyclic monophosphate and the action of insulin and acetylcholine. Proc Natl Acad Sci U S A. 1973 Aug;70(8):2443–2447. doi: 10.1073/pnas.70.8.2443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Inbar M., Shinitzky M., Sachs L. Microviscosity in the surface membrane lipid layer of intact normal lymphocytes and leukemic cells. FEBS Lett. 1974 Jan 15;38(3):268–270. doi: 10.1016/0014-5793(74)80069-4. [DOI] [PubMed] [Google Scholar]
  18. Jefferson L. S., Exton J. H., Butcher R. W., Sutherland E. W., Park C. R. Role of adenosine 3',5'-monophosphate in the effects of insulin and anti-insulin serum on liver metabolism. J Biol Chem. 1968 Mar 10;243(5):1031–1038. [PubMed] [Google Scholar]
  19. Jefferson L. S., Korner A. A direct effect of growth hormone on the incorporation of precursors into proteins and nucleic acids of perfused rat liver. Biochem J. 1967 Sep;104(3):826–832. doi: 10.1042/bj1040826. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. John D. W., Miller L. L. Regulation of net biosynthesis of serum albumin and acute phase plasma proteins. Induction of enhanced net synthesis of fibrinogen, alpha1-acid glycoprotein, alpha2 (acute phase)-globulin, and haptoglobin by amino acids and hormones during perfusion of the isolated normal rat liver. J Biol Chem. 1969 Nov 25;244(22):6134–6142. [PubMed] [Google Scholar]
  21. Koch K., Leffert H. L. Growth control of differentiated fetal rat hepatocytes in primary monolayer culture. VI. Studies with conditioned medium and its functional interactions with serum factors. J Cell Biol. 1974 Sep;62(3):780–791. doi: 10.1083/jcb.62.3.780. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kram R., Tomkins G. M. Pleiotypic control by cyclic AMP: interaction with cyclic GMP and possible role of microtubules. Proc Natl Acad Sci U S A. 1973 Jun;70(6):1659–1663. doi: 10.1073/pnas.70.6.1659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lakshmanan M. R., Nepokroeff C. M., Porter J. W. Control of the synthesis of fatty-acid synthetase in rat liver by insulin, glucagon, and adenosine 3':5' cyclic monophosphate. Proc Natl Acad Sci U S A. 1972 Dec;69(12):3516–3519. doi: 10.1073/pnas.69.12.3516. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Leffert H. L. Growth control of differentiated fetal rat hepatocytes in primary monolayer culture. V. Occurrence in dialyzed fetal bovine serum of macromolecules having both positive and negative growth regulatory functions. J Cell Biol. 1974 Sep;62(3):767–779. doi: 10.1083/jcb.62.3.767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Leffert H. L., Paul D. Studies on primary cultures of differentiated fetal liver cells. J Cell Biol. 1972 Mar;52(3):559–568. doi: 10.1083/jcb.52.3.559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Leffert H. L., Sell S. Alpha1-fetoprotein biosynthesis during the growth cycle of differentiated fetal rat hepatocytes in primary monolayer culture. J Cell Biol. 1974 Jun;61(3):823–829. doi: 10.1083/jcb.61.3.823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. MILLER L. L. DIRECT ACTIONS OF INSULIN, GLUCAGON, AND EPINEPHRINE ON THE ISOLATED PERFUSED RAT LIVER. Fed Proc. 1965 May-Jun;24:737–744. [PubMed] [Google Scholar]
  28. MOUGEY E. H., MASON J. W. SEPARATION OF SOME IODOAMINO ACIDS AND IODIDE BY GEL FILTRATION. Anal Biochem. 1963 Sep;6:223–233. doi: 10.1016/0003-2697(63)90129-5. [DOI] [PubMed] [Google Scholar]
  29. Macmanus J. P., Franks D. J., Youdale T., Braceland B. M. Increases in rat liver cyclic AMP concentrations prior to the initiation of DNA synthesis following partial hepatectomy or hormone infusion. Biochem Biophys Res Commun. 1972 Dec 4;49(5):1201–1207. doi: 10.1016/0006-291x(72)90596-7. [DOI] [PubMed] [Google Scholar]
  30. Nepokroeff C. M., Lakshmanan M. R., Ness G. C., Dugan R. E., Porter J. W. Regulation of the diurnal rhythm of rat liver beta-hydroxy-beta-methylglutaryl coenzmye A reductase activity by insulin, glucagon, cyclic AMP and hydrocortisone. Arch Biochem Biophys. 1974 Feb;160(2):387–396. doi: 10.1016/0003-9861(74)90412-3. [DOI] [PubMed] [Google Scholar]
  31. Ness G. C., Dugan R. E., Lakshmanan M. R., Nepokroeff C. M., Porter J. W. Stimulation of hepatic beta-hydroxy-beta-methylglutaryl coenzyme A reductase activity in hypophysectomized rats by L-triiodothyronine. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3839–3842. doi: 10.1073/pnas.70.12.3839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Oppenheimer J. H. Possible clues in the continuing search for the subcellular basis of thyroid hormone action. Mt Sinai J Med. 1973 May-Jun;40(3):491–501. [PubMed] [Google Scholar]
  33. Papahadjopoulos D. Cholesterol and cell membrane function: a hypothesis concerning etiology of atherosclerosis. J Theor Biol. 1974 Feb;43(2):329–337. doi: 10.1016/s0022-5193(74)80064-0. [DOI] [PubMed] [Google Scholar]
  34. Paul D., Leffert H., Sato G., Holley R. W. Stimulation of DNA and protein synthesis in fetal-rat liver cells by serum from partially hepatectomized rats. Proc Natl Acad Sci U S A. 1972 Feb;69(2):374–377. doi: 10.1073/pnas.69.2.374. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Rabes H. M., Brändle H. Synthesis of RNA, protein, and DNA in the liver of normal and hypophysectomized rats after partial hepatectomy. Cancer Res. 1969 Apr;29(4):817–822. [PubMed] [Google Scholar]
  36. Rozengurt E., Pardee A. B. Opposite effects of dibutyryl adenosine 3':5' cyclic monophosphate and serum on growth of Chinese hamster cells. J Cell Physiol. 1972 Oct;80(2):273–279. doi: 10.1002/jcp.1040800215. [DOI] [PubMed] [Google Scholar]
  37. SALMON W. D., Jr, DAUGHADAY W. H. A hormonally controlled serum factor which stimulates sulfate incorporation by cartilage in vitro. J Lab Clin Med. 1957 Jun;49(6):825–836. [PubMed] [Google Scholar]
  38. Samuels H. H., Tsai J. S., Cintron R. Thyroid hormone action: a cell-culture system responsive to physiological concentrations of thyroid hormones. Science. 1973 Sep 28;181(4106):1253–1256. doi: 10.1126/science.181.4106.1253. [DOI] [PubMed] [Google Scholar]
  39. Samuels H. H., Tsai J. S. Thyroid hormone action in cell culture: domonstration of nuclear receptors in intact cells and isolated nuclei. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3488–3492. doi: 10.1073/pnas.70.12.3488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Short J., Armstrong N. B., Zemel R., Lieberman I. A role for amino acids in the induction of deoxyribonucleic acid synthesis in liver. Biochem Biophys Res Commun. 1973 Jan 23;50(2):430–437. doi: 10.1016/0006-291x(73)90858-9. [DOI] [PubMed] [Google Scholar]
  41. Short J., Brown R. F., Husakova A., Gilbertson J. R., Zemel R., Lieberman I. Induction of deoxyribonucleic acid synthesis in the liver of the intact animal. J Biol Chem. 1972 Mar 25;247(6):1757–1766. [PubMed] [Google Scholar]
  42. Starzl T. E., Francavilla A., Halgrimson C. G., Francavilla F. R., Porter K. A., Brown T. H., Putnam C. W. The origin, hormonal nature, and action of hepatotrophic substances in portal venous blood. Surg Gynecol Obstet. 1973 Aug;137(2):179–199. [PMC free article] [PubMed] [Google Scholar]
  43. Steiner A. L., Pagliara A. S., Chase L. R., Kipnis D. M. Radioimmunoassay for cyclic nucleotides. II. Adenosine 3',5'-monophosphate and guanosine 3',5'-monophosphate in mammalian tissues and body fluids. J Biol Chem. 1972 Feb 25;247(4):1114–1120. [PubMed] [Google Scholar]
  44. TEPPERMAN J., TEPPERMAN H. M. Some effects of hormones on cells and cell constituents. Pharmacol Rev. 1960 Sep;12:301–353. [PubMed] [Google Scholar]
  45. Temin H. M. Stimulation by serum of multiplication of stationary chicken cells. J Cell Physiol. 1971 Oct;78(2):161–170. doi: 10.1002/jcp.1040780202. [DOI] [PubMed] [Google Scholar]
  46. Todaro G. J., Lazar G. K., Green H. The initiation of cell division in a contact-inhibited mammalian cell line. J Cell Physiol. 1965 Dec;66(3):325–333. doi: 10.1002/jcp.1030660310. [DOI] [PubMed] [Google Scholar]
  47. Tomkins G. M., Gelehrter T. D., Granner D., Martin D., Jr, Samuels H. H., Thompson E. B. Control of specific gene expression in higher organisms. Expression of mammalian genes may be controlled by repressors acting on the translation of messenger RNA. Science. 1969 Dec 19;166(3912):1474–1480. doi: 10.1126/science.166.3912.1474. [DOI] [PubMed] [Google Scholar]
  48. Vaheri A., Ruoslahti E., Hovi T., Nordling S. Stimulation of density-inhibited cell cultures by insulin. J Cell Physiol. 1973 Jun;81(3):355–364. doi: 10.1002/jcp.1040810308. [DOI] [PubMed] [Google Scholar]
  49. Van Wyk J. J., Hall K., Van den Brande J. L., Weaver R. P. Further purification and characterization of sulfation factor and thymidine factor from acromegalic plasma. J Clin Endocrinol Metab. 1971 Mar;32(3):389–403. doi: 10.1210/jcem-32-3-389. [DOI] [PubMed] [Google Scholar]
  50. Vethamany-Globus S., Liversage R. A. Effects of insulin insufficiency on forelimb and tail regeneration in adult Diemictylus viridescens. J Embryol Exp Morphol. 1973 Oct;30(2):427–447. [PubMed] [Google Scholar]
  51. Vethamany-Globus S., Liversage R. A. In vitro studies of the influence of hormones on tail regeneration in adult Diemictylus viridescens. J Embryol Exp Morphol. 1973 Oct;30(2):397–413. [PubMed] [Google Scholar]
  52. Vethamany-Globus S., Liversage R. A. The relationship between the anterior pituitary gland and the pancreas in tail regeneration of the adult newt. J Embryol Exp Morphol. 1973 Oct;30(2):415–426. [PubMed] [Google Scholar]
  53. Younger L. R., King J., Steiner D. F. Hepatic proliferative response to insulin in severe alloxan diabetes. Cancer Res. 1966 Jul;26(7):1408–1414. [PubMed] [Google Scholar]
  54. Younger L. R., King J., Steiner D. F. Hepatic proliferative response to insulin in severe alloxan diabetes. Cancer Res. 1966 Jul;26(7):1408–1414. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES