Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1974 Mar 1;60(3):641–652. doi: 10.1083/jcb.60.3.641

A STUDY ON THE MECHANISM OF INTERCELLULAR ADHESION

Effects of Neuraminidase, Calcium, and Trypsin on the Aggregation of Suspended HeLa Cells

Joris J Deman 1, Erik A Bruyneel 1, Marc M Mareel 1
PMCID: PMC2109235  PMID: 4824290

Abstract

Aggregation of suspended HeLa cells is increased on removal of cell surface sialic acid. Calcium ions promote aggregation whereas magnesium ions have no effect. The calcium effect is abolished by previous treatment of the cells with neuraminidase. Trypsinization of the HeLa cells followed by thorough washing diminishes the rate of mutual cell aggregation. Subsequent incubation with neuraminidase restores the aggregation rate to the original value before trypsin treatment. Cells which had acquired a greater tendency for aggregation after removal of peripheral sialic acid lose this property when subsequently treated with trypsin. Calcium ions have no aggregative effect on trypsinized cells. In contrast to HeLa cells, aggregation of human erythrocytes was not increased after treatment with neuraminidase or on addition of calcium. The results with HeLa cells are interpreted as follows: (a) Trypsin-releasable material confers adhesiveness upon the cells. (b) The adhesive property of this material is counteracted by the presence of cell surface sialic acids. (c) Calcium ions exert their effect by attenuating the adverse effect of sialic acid.

Full Text

The Full Text of this article is available as a PDF (716.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bosmann H. B., Hagopian A., Eylar E. H. Cellular membranes: the isolation and characterization of the plasma and smooth membranes of HeLa cells. Arch Biochem Biophys. 1968 Oct;128(1):51–69. doi: 10.1016/0003-9861(68)90008-8. [DOI] [PubMed] [Google Scholar]
  2. Brooks D. E., Seaman G. V. Electroviscous effect in dextran-erythrocyte suspensions. Nat New Biol. 1972 Aug 23;238(86):251–253. doi: 10.1038/newbio238251a0. [DOI] [PubMed] [Google Scholar]
  3. Buck C. A., Glick M. C., Warren L. A comparative study of glycoproteins from the surface of control and Rous sarcoma virus transformed hamster cells. Biochemistry. 1970 Nov 10;9(23):4567–4576. doi: 10.1021/bi00825a016. [DOI] [PubMed] [Google Scholar]
  4. COOK G. M., HEARD D. H., SEAMAN G. V. A sialomucopeptide liberated by trypsin from the human erythrocyte. Nature. 1960 Dec 17;188:1011–1012. doi: 10.1038/1881011a0. [DOI] [PubMed] [Google Scholar]
  5. COOK G. M., SEAMAN G. V., WEISS L. PHYSICOCHEMICAL DIFFERENCES BETWEEN ASCITIC AND SOLID FORMS OF SARCOMA 37 CELLS. Cancer Res. 1963 Dec;23:1813–1818. [PubMed] [Google Scholar]
  6. Capaldi R. A. A cross-linking study of the beef erythrocyte membrane: extensive interaction of all the proteins of the membrane except for the glycoproteins. Biochem Biophys Res Commun. 1973 Feb 5;50(3):656–661. doi: 10.1016/0006-291x(73)91294-1. [DOI] [PubMed] [Google Scholar]
  7. Codington J. F., Sanford B. H., Jeanloz R. W. Glycoprotein coat of the TA 3 cell. I. Removal of carbohydrate and protein material from viable cells. J Natl Cancer Inst. 1970 Oct;45(4):637–647. [PubMed] [Google Scholar]
  8. Deman J., Bruyneel E. A method for the quantitative measurement of cell aggregation. Exp Cell Res. 1973 Oct;81(2):351–359. doi: 10.1016/0014-4827(73)90525-9. [DOI] [PubMed] [Google Scholar]
  9. Deman J., Mareel M., Bruyneel E. Effects of calcium and bound sialic acid on the viscosity of mucin. Biochim Biophys Acta. 1973 Feb 28;297(2):486–490. doi: 10.1016/0304-4165(73)90095-0. [DOI] [PubMed] [Google Scholar]
  10. Deman J., van Vaerenbergh P. M., Joos P. Evidence for sialic acid-lecithin binding at the plasma membrane in the presence of cations. Eur J Cancer. 1971 Aug;7(4):317–323. doi: 10.1016/0014-2964(71)90074-0. [DOI] [PubMed] [Google Scholar]
  11. EASTY G. C., EASTY D. M., AMBROSE E. J. Studies of cellular adhesiveness. Exp Cell Res. 1960 Apr;19:539–548. doi: 10.1016/0014-4827(60)90062-8. [DOI] [PubMed] [Google Scholar]
  12. EYLAR E. H., MADOFF M. A., BRODY O. V., ONCLEY J. L. The contribution of sialic acid to the surface charge of the erythrocyte. J Biol Chem. 1962 Jun;237:1992–2000. [PubMed] [Google Scholar]
  13. FORRESTER J. A., AMBROSE E. J., MACPHERSON J. A. Electrophoretic investigations of a clone of hamster fibroblasts and polyoma-transformed cells from the same population. Nature. 1962 Dec 15;196:1068–1070. doi: 10.1038/1961068a0. [DOI] [PubMed] [Google Scholar]
  14. FORRESTER J. A., AMBROSE E. J., STOKER M. G. MICROELECTROPHORESIS OF NORMAL AND TRANSFORMED CLONES OF HAMSTER KIDNEY FIBROBLASTS. Nature. 1964 Feb 29;201:945–946. doi: 10.1038/201945a0. [DOI] [PubMed] [Google Scholar]
  15. GOTTSCHALK A. Correlation between composition, structure, shape and function of a salivary mucoprotein. Nature. 1960 Jun 18;186:949–951. doi: 10.1038/186949a0. [DOI] [PubMed] [Google Scholar]
  16. Glick M. C., Comstock C., Warren L. Membranes of animal cells. VII. Carbohydrates of surface membranes and whole cells. Biochim Biophys Acta. 1970 Dec 1;219(2):290–300. doi: 10.1016/0005-2736(70)90208-7. [DOI] [PubMed] [Google Scholar]
  17. Hakomori S. I., Teather C., Andrews H. Organizational difference of cell surface "hematoside" in normal and virally transformed cells. Biochem Biophys Res Commun. 1968 Nov 25;33(4):563–568. doi: 10.1016/0006-291x(68)90332-x. [DOI] [PubMed] [Google Scholar]
  18. Hof L., Faillard H. The serum dependence of the occurrence of N-glycolylneuraminic acid in HeLa cells. Biochim Biophys Acta. 1973 Feb 28;297(2):561–563. doi: 10.1016/0304-4165(73)90105-0. [DOI] [PubMed] [Google Scholar]
  19. Horvath C., Sovak M. Membrane coarctation by calcium as a regulator for bound enzymes. Biochim Biophys Acta. 1973 Apr 16;298(4):850–860. doi: 10.1016/0005-2736(73)90389-1. [DOI] [PubMed] [Google Scholar]
  20. Hubbard A. L., Cohn Z. A. The enzymatic iodination of the red cell membrane. J Cell Biol. 1972 Nov;55(2):390–405. doi: 10.1083/jcb.55.2.390. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hughes R. C., Sanford B., Jeanloz R. W. Regeneration of the surface glycoproteins of a transplantable mouse tumor cell after treatment with neuraminidase. Proc Natl Acad Sci U S A. 1972 Apr;69(4):942–945. doi: 10.1073/pnas.69.4.942. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Jan K. M., Chien S. Role of surface electric charge in red blood cell interactions. J Gen Physiol. 1973 May;61(5):638–654. doi: 10.1085/jgp.61.5.638. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kapeller M., Gal-Oz R., Grover N. B., Doljanski F. Natural shedding of carbohydrate-containing macromolecules from cell surfaces. Exp Eye Res. 1973 Apr;79(1):152–158. [PubMed] [Google Scholar]
  24. Kemp R. B. Effect of the removal of cell surface sialic acids on cell aggregation in vitro. Nature. 1968 Jun 29;218(5148):1255–1256. doi: 10.1038/2181255a0. [DOI] [PubMed] [Google Scholar]
  25. Kojima K., Maekawa A. A difference in the architecture of surface membrane between two cell types of rat ascites hepatomas. Cancer Res. 1972 Apr;32(4):847–852. [PubMed] [Google Scholar]
  26. Kojima K., Maekawa A. Difference in electrokinetic charge of cells between two cell types of ascites hepatoma after removal of sialic acid. Cancer Res. 1970 Dec;30(12):2858–2862. [PubMed] [Google Scholar]
  27. Kornfeld S., Kornfeld R. Solubilization and partial characterization of a phytohemagglutinin receptor site from human erythrocytes. Proc Natl Acad Sci U S A. 1969 Aug;63(4):1439–1446. doi: 10.1073/pnas.63.4.1439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  29. Long C., Mouat B. The binding of calcium ions by erythrocytes and 'ghost' -cell membranes. Biochem J. 1971 Aug;123(5):829–836. doi: 10.1042/bj1230829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Mareel M., De Ridder L., Deman J. Histochemical study of the distribution of sialic acid on the surface of HeLa cells in culture. Histochemie. 1972;32(4):335–341. doi: 10.1007/BF00305767. [DOI] [PubMed] [Google Scholar]
  31. Miller A. O. Characterization of messenger ribonucleic acid in partially synchronized HeLa cells. Arch Biochem Biophys. 1967 Nov;122(2):270–279. doi: 10.1016/0003-9861(67)90195-6. [DOI] [PubMed] [Google Scholar]
  32. Modjanova E. A., Malenkov A. G. Alteration of properties of cell contacts during progression of hepatomas. Exp Cell Res. 1973 Feb;76(2):305–314. doi: 10.1016/0014-4827(73)90381-9. [DOI] [PubMed] [Google Scholar]
  33. Nordling S., Mayhew E. On the intracellular uptake of neuraminidase. Exp Cell Res. 1966 Nov-Dec;44(2):552–562. doi: 10.1016/0014-4827(66)90459-9. [DOI] [PubMed] [Google Scholar]
  34. Oppenheimer S. B., Edidin M., Orr C. W., Roseman S. An L-glutamine requirement for intercellular adhesion. Proc Natl Acad Sci U S A. 1969 Aug;63(4):1395–1402. doi: 10.1073/pnas.63.4.1395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Oppenheimer S. B. Utilization of L-glutamine in intercellular adhesion: ascites tumor and embryonic cells. Exp Cell Res. 1973 Mar 15;77(1):175–182. doi: 10.1016/0014-4827(73)90566-1. [DOI] [PubMed] [Google Scholar]
  36. PETHICA B. A. The physical chemistry of cell adhesion. Exp Cell Res. 1961;Suppl 8:123–140. doi: 10.1016/0014-4827(61)90344-5. [DOI] [PubMed] [Google Scholar]
  37. Phillips D. R. Effect of trypsin on the exposed polypeptides and glycoproteins in the human platelet membrane. Biochemistry. 1972 Nov 21;11(24):4582–4588. doi: 10.1021/bi00774a025. [DOI] [PubMed] [Google Scholar]
  38. Ray R. K., Simmons R. L. Differential release of sialic acid from normal and malignant cells by Vibrio cholerae neuraminidase or influenza virus neuraminidase. Cancer Res. 1973 May;33(5):936–939. [PubMed] [Google Scholar]
  39. Roseman S. The synthesis of complex carbohydrates by multiglycosyltransferase systems and their potential function in intercellular adhesion. Chem Phys Lipids. 1970 Oct;5(1):270–297. doi: 10.1016/0009-3084(70)90024-1. [DOI] [PubMed] [Google Scholar]
  40. STEINBERG M. S. "ECM": its nature, origin and function in cell aggregation. Exp Cell Res. 1963 Apr;30:257–279. doi: 10.1016/0014-4827(63)90299-4. [DOI] [PubMed] [Google Scholar]
  41. Santer V., Cone R. E., Marchalonis J. J. The glycoprotein surface coat on different classes of murine lymphocytes. Exp Cell Res. 1973 Jun;79(2):404–416. doi: 10.1016/0014-4827(73)90460-6. [DOI] [PubMed] [Google Scholar]
  42. Sauter C., Lindenmann J., Gerber A. Agglutination of leukemic myeloblasts by neuraminidase. Eur J Cancer. 1972 Aug;8(4):451–453. doi: 10.1016/0014-2964(72)90131-4. [DOI] [PubMed] [Google Scholar]
  43. Sherbet G. V., Lakshimi M. S., Rao K. V. Characterisation of ionogenic groups and estimation of the net negative electric charge on the surface of cells using natural pH gradients. Exp Cell Res. 1972 Jan;70(1):113–123. doi: 10.1016/0014-4827(72)90188-7. [DOI] [PubMed] [Google Scholar]
  44. Shlatz L., Marinetti G. V. Calcium binding to the rat liver plasma membrane. Biochim Biophys Acta. 1972 Dec 1;290(1):70–83. doi: 10.1016/0005-2736(72)90053-3. [DOI] [PubMed] [Google Scholar]
  45. Tosteson M. T., Lau F., Tosteson D. C. Incorporation of a functional membrane glycoprotein into lipid bilayer membranes. Nat New Biol. 1973 May 23;243(125):112–114. [PubMed] [Google Scholar]
  46. Tu S. H., Nordquist R. E., Griffin M. J. Membrane changes in HeLa cells grown with cortisol. Biochim Biophys Acta. 1972 Dec 1;290(1):92–109. doi: 10.1016/0005-2736(72)90055-7. [DOI] [PubMed] [Google Scholar]
  47. Vasudevan D. M., Balakrishnan K., Talwar G. P. Effect of neuraminidase on electrophoretic mobility and immune cytolysis of human uterine cervix carcinoma cells. Int J Cancer. 1970 Nov 15;6(3):506–516. doi: 10.1002/ijc.2910060322. [DOI] [PubMed] [Google Scholar]
  48. Vicker M. G., Edwards J. G. The effect of neuraminidase on the aggregation of BHK21 cells and BHK21 cells transformed by polyoma virus. J Cell Sci. 1972 May;10(3):759–768. doi: 10.1242/jcs.10.3.759. [DOI] [PubMed] [Google Scholar]
  49. WARREN L. The thiobarbituric acid assay of sialic acids. J Biol Chem. 1959 Aug;234(8):1971–1975. [PubMed] [Google Scholar]
  50. Weinstein D. B., Marsh J. B., Glick M. C., Warren L. Membranes of animal cells. VI. The glycolipids of the L cell and its surface membrane. J Biol Chem. 1970 Aug 10;245(15):3928–3937. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES