Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1974 Mar 1;60(3):586–601. doi: 10.1083/jcb.60.3.586

THE MYOCARDIAL INTERSTITIUM: ITS STRUCTURE AND ITS ROLE IN IONIC EXCHANGE

J S Frank 1, G A Langer 1
PMCID: PMC2109249  PMID: 4824287

Abstract

The structures present in the rabbit myocardial interstitium have been defined and quantified. Stereological methods were used for the quantification. The extracellular space contains abundant ground substance (23%) distributed in a homogeneous mat throughout the space and within the T tubules. The remainder of the space contains 59% blood vessels, 6% "empty" space, 4.0% collagen, and 7.0% connective tissue cells. The arrangement of the interstitium in relation to the myocardial cells and the capillaries has been described. In addition, the extracellular space was measured using extracellular markers: 14C sucrose (neutrally charged), 35SO4 (negatively charged), and 140La (positively charged). The La+++ space differed markedly from the other two (P << 0.001), indicating extensive binding of La+++ to polyanionic extracellular structures. Cetylpyridinium chloride, a cationic detergent specific for polysaccharides, caused precipitation of the ground substance and marked decrease in the La+++ space. This study indicates the considerable structural complexity of the interstitium. The effects of an abundant negatively charged protein-polysaccharide within the interstitium has been discussed in terms of cation exchange in arterially perfused tissue.

Full Text

The Full Text of this article is available as a PDF (1.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. CHAYES F. DETERMINATION OF RELATIVE VOLUME BY SECTIONAL ANALYSIS. Lab Invest. 1965 Jun;14:987–995. [PubMed] [Google Scholar]
  2. DOGGENWEILER C. F., FRENK S. STAINING PROPERTIES OF LANTHANUM ON CELL MEMBRANES. Proc Natl Acad Sci U S A. 1965 Feb;53:425–430. doi: 10.1073/pnas.53.2.425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Elias H., Hennig A., Schwartz D. E. Stereology: applications to biomedicalresearch. Physiol Rev. 1971 Jan;51(1):158–200. doi: 10.1152/physrev.1971.51.1.158. [DOI] [PubMed] [Google Scholar]
  4. Fawcett D. W., McNutt N. S. The ultrastructure of the cat myocardium. I. Ventricular papillary muscle. J Cell Biol. 1969 Jul;42(1):1–45. doi: 10.1083/jcb.42.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. JOHNSON J. A., SIMONDS M. A. Chemical and histological space determinations in rabbit heart. Am J Physiol. 1962 Mar;202:589–592. doi: 10.1152/ajplegacy.1962.202.3.589. [DOI] [PubMed] [Google Scholar]
  6. LANGER G. A., BRADY A. J. Calcium flux in the mammalian ventricular myocardium. J Gen Physiol. 1963 Mar;46:703–719. doi: 10.1085/jgp.46.4.703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Langer G. A., Frank J. S. Lanthanum in heart cell culture. Effect on calcium exchange correlated with its localization. J Cell Biol. 1972 Sep;54(3):441–455. doi: 10.1083/jcb.54.3.441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Langer G. A. Heart: excitation-contraction coupling. Annu Rev Physiol. 1973;35:55–86. doi: 10.1146/annurev.ph.35.030173.000415. [DOI] [PubMed] [Google Scholar]
  9. Langer G. A. Sodium exchange in dog ventricular muscle. Relation to frequency of contraction and its possible role in the control of myocardial contractility. J Gen Physiol. 1967 May;50(5):1221–1239. doi: 10.1085/jgp.50.5.1221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Leak L. V. Fractured surfaces of myocardial cells. J Ultrastruct Res. 1970 Apr;31(1):76–94. doi: 10.1016/s0022-5320(70)90146-2. [DOI] [PubMed] [Google Scholar]
  11. Leak L. V. Frozen-fractured images of blood capillaries in heart tissue. J Ultrastruct Res. 1971 Apr;35(1):127–146. doi: 10.1016/s0022-5320(71)80147-8. [DOI] [PubMed] [Google Scholar]
  12. Legato M. J., Spiro D., Langer G. A. Ultrastructural alterations produced in mammalian myocardium by variation in perfusate ionic composition. J Cell Biol. 1968 Apr;37(1):1–12. doi: 10.1083/jcb.37.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Myers D. B., Highton T. C., Rayns D. G. Ruthenium red-positive filaments interconnecting collagen fibrils. J Ultrastruct Res. 1973 Jan;42(1):87–92. doi: 10.1016/s0022-5320(73)80008-5. [DOI] [PubMed] [Google Scholar]
  14. Page E., Page E. G. Distribution of ions and water between tissue compartments in the perfused left ventricle of the rat heart. Circ Res. 1968 Mar;22(3):435–446. doi: 10.1161/01.res.22.3.435. [DOI] [PubMed] [Google Scholar]
  15. Pease D. C., Bouteille M. The tridimensional ultrastructure of native collagenous fibrils, cytochemical evidence for a carbohydrate matrix. J Ultrastruct Res. 1971 May;35(3):339–358. doi: 10.1016/s0022-5320(71)80162-4. [DOI] [PubMed] [Google Scholar]
  16. Preston B. N., Snowden J. M. Model connective tissue systems: the effect of proteoglycans on the diffusional behavior of small non-electrolytes and microions. Biopolymers. 1972;11(8):1627–1643. doi: 10.1002/bip.1972.360110810. [DOI] [PubMed] [Google Scholar]
  17. Rapoport S. I. A fixed charge model of the transverse tubular system of frog sartorius. J Gen Physiol. 1969 Aug;54(2):178–187. doi: 10.1085/jgp.54.2.178. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ross R. The elastic fiber. J Histochem Cytochem. 1973 Mar;21(3):199–208. doi: 10.1177/21.3.199. [DOI] [PubMed] [Google Scholar]
  19. SCOTT J. E. The precipitation of polyanions by long-chain aliphatic ammonium salts. 5. The influence on precipitation of changes in the amine structure. Biochem J. 1961 Nov;81:418–424. doi: 10.1042/bj0810418. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. SCOTT J. E. The precipitation of polyanions by long-chain aliphatic ammonium salts. 6. The affinity of substituted ammonium cations for the anionic groups of some biological polymers. Biochem J. 1962 Aug;84:270–275. doi: 10.1042/bj0840270. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sanborn W. G., Langer G. A. Specific uncoupling of excitation and contraction in mammalian cardiac tissue by lanthanum. J Gen Physiol. 1970 Aug;56(2):191–217. doi: 10.1085/jgp.56.2.191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Shea S. M. Lanthanum staining of the surface coat of cells. Its enhancement by the use of fixatives containing Alcian blue or cetylpyridinium chloride. J Cell Biol. 1971 Dec;51(3):611–620. doi: 10.1083/jcb.51.3.611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Shine K. I., Serena S. D., Langer G. A. Kinetic localization of contractile calcium in rabbit myocardium. Am J Physiol. 1971 Nov;221(5):1408–1417. doi: 10.1152/ajplegacy.1971.221.5.1408. [DOI] [PubMed] [Google Scholar]
  24. Sperelakis N., Rubio R. An orderly lattice of axial tubules which interconnect adjacent transverse tubules in guinea-pig ventricular myocardium. J Mol Cell Cardiol. 1971 Aug;2(3):211–220. doi: 10.1016/0022-2828(71)90054-x. [DOI] [PubMed] [Google Scholar]
  25. Weibel E. R., Kistler G. S., Scherle W. F. Practical stereological methods for morphometric cytology. J Cell Biol. 1966 Jul;30(1):23–38. doi: 10.1083/jcb.30.1.23. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Weibel E. R. Stereological principles for morphometry in electron microscopic cytology. Int Rev Cytol. 1969;26:235–302. doi: 10.1016/s0074-7696(08)61637-x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES