Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1974 Apr 1;61(1):26–34. doi: 10.1083/jcb.61.1.26

STEROID INHIBITION OF PROTEIN INCORPORATION BY ISOLATED AMPHIBIAN OOCYTES

Allen W Schuetz 1, Robin A Wallace 1, James N Dumont 1
PMCID: PMC2109255  PMID: 4544841

Abstract

The relationship between blood protein (vitellogenin) incorporation and nuclear maturation was studied in individual amphibian oocytes after in vitro exposure to desoxycorticosterone acetate (DOCA). Isolated Rana pipiens oocytes were incubated in vitro with radioactively labeled oocyte yolk precursor ([3H]vitellogenin) obtained from estrogenized Xenopus laevis. Incorporation of labeled vitellogenin into the oocytes continued over a 24-h period. Oocytes simultaneously exposed to DOCA and to labeled vitellogenin exhibited both inhibition of vitellogenin incorporation and stimulation of nuclear maturation and cortical changes. Inhibition of vitellogenin incorporation was observed after approximately 9 h of incubation and was correlated with the time of nuclear breakdown. Preincubation of oocytes in steroid for 9 h essentially terminated vitellogenin incorporation. Incorporation of vitellogenin occurred after removal of follicle cells from the oocyte by a short treatment with EDTA. These results demonstrate the macromolecular vitellogenin transport system remains operative in oocytes which can undergo nuclear maturation and that the steroid DOCA can affect its function. Evidence suggests that the mechanism of steroid inhibition is in part the result of inhibition of the micropinocytotic process in the oocyte cortex.

Full Text

The Full Text of this article is available as a PDF (834.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ave K., Kawakami I., Sameshima M. Studies on the heterogeneity of cell populations in amphibian presumptive epidermis, with reference to primary induction. Dev Biol. 1968 Jun;17(6):617–626. doi: 10.1016/0012-1606(68)90009-2. [DOI] [PubMed] [Google Scholar]
  2. Dumont J. N. Oogenesis in Xenopus laevis (Daudin). I. Stages of oocyte development in laboratory maintained animals. J Morphol. 1972 Feb;136(2):153–179. doi: 10.1002/jmor.1051360203. [DOI] [PubMed] [Google Scholar]
  3. Dumont J. N., Wallace R. A. The effects of vinblastine on isolated Xenopus oocytes. J Cell Biol. 1972 May;53(2):605–610. doi: 10.1083/jcb.53.2.605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Jared D. W., Wallace R. A. Protein uptake in vitro by amphibian oocytes. Exp Cell Res. 1969 Oct;57(2):454–457. doi: 10.1016/0014-4827(69)90175-x. [DOI] [PubMed] [Google Scholar]
  5. Masui Y. Relative roles of the pituitary, follicle cells, and progesterone in the induction of oocyte maturation in Rana pipiens. J Exp Zool. 1967 Dec;166(3):365–375. doi: 10.1002/jez.1401660309. [DOI] [PubMed] [Google Scholar]
  6. Redshaw M. R., Follett B. K. The crystalline yolk-platelet proteins and their soluble plasma precursor in an amphibian, Xenopus laevis. Biochem J. 1971 Oct;124(4):759–766. doi: 10.1042/bj1240759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Schuetz A. W. Action of hormones on germinal vesicle breakdown in frog (Rana pipiens) oocytes. J Exp Zool. 1967 Dec;166(3):347–354. doi: 10.1002/jez.1401660307. [DOI] [PubMed] [Google Scholar]
  8. Smith L. D., Ecker R. E. Role of the oocyte nucleus in physiological maturation in Rana pipiens. Dev Biol. 1969 Mar;19(3):281–309. doi: 10.1016/0012-1606(69)90065-7. [DOI] [PubMed] [Google Scholar]
  9. Wallace R. A., Ho T. Protein incorporation by isolated amphibian oocytes. II. A survey of inhibitors. J Exp Zool. 1972 Sep;181(3):303–317. doi: 10.1002/jez.1401810303. [DOI] [PubMed] [Google Scholar]
  10. Wallace R. A., Ho T., Salter D. W., Jared D. W. Protein incorporation by isolated amphibian oocytes. IV. The role of follicle cells and calcium during protein uptake. Exp Cell Res. 1973 Dec;82(2):287–295. doi: 10.1016/0014-4827(73)90343-1. [DOI] [PubMed] [Google Scholar]
  11. Wallace R. A., Jared D. W., Nelson B. L. Protein incorporation by isolated amphibian oocytes. I. Preliminary studies. J Exp Zool. 1970 Nov;175(3):259–269. doi: 10.1002/jez.1401750302. [DOI] [PubMed] [Google Scholar]
  12. Wallace R. A., Jared D. W. Studies on amphibian yolk. 8. The estrogen-induced hepatic synthesis of a serum lipophosphoprotein and its selective uptake by the ovary and trasformation into yolk platelet proteins in Xenopus laevis. Dev Biol. 1969 May;19(5):498–526. doi: 10.1016/0012-1606(69)90085-2. [DOI] [PubMed] [Google Scholar]
  13. Wallace R. A., Nickol J. M., Ho T., Jared D. W. Studies on amphibian yolk. X. The relative roles of autosynthetic and heterosynthetic processes during yolk protein assembly by isolated oocytes. Dev Biol. 1972 Nov;29(3):255–272. doi: 10.1016/0012-1606(72)90066-8. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES