Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1974 Apr 1;61(1):107–122. doi: 10.1083/jcb.61.1.107

EXCITABLE MEMBRANE ULTRASTRUCTURE

I. Freeze Fracture of Crayfish Axons

Camillo Peracchia 1
PMCID: PMC2109264  PMID: 4819303

Abstract

Cross-sectioned and cross-fractured crayfish axons display regions in which axon and Schwann cell surface membranes are regularly curved and project into the axoplasm. At these regions (projections) the two membranes run precisely parallel, separated by a gap of 130–140 Å. Longitudinal fractures through the axons expose the inner fractured surface of either the internal (face A) or the external (face B) leaflet of axon and adjacent Schwann cell surface membranes. On both membranes the projections appear as elongated structures oriented with the long axis parallel to the long axis of the nerve fiber. On face A of the axon surface membrane they are seen as elongated indentations 0.5–1.2-µm long, 0.12–0.15-µm wide. The indentations contain parallel chains of globules. The chains repeat every 120–125 Å and are oriented obliquely in such a way that if one looks at the axon surface from the extracellular space, the axis of the chains is skewed counterclockwise to the long axis of the indentations by an acute angle (most often 55–60°). The globules repeat along the chain every 80–85 Å. Globules of adjacent chains are in register in such a way that the axis on which globules of neighboring chains are aligned forms an angle of 75–85° with the axis of the chains. The complex structure can be defined as a globular array with a rhomboidal unit cell of 80–85 x 120–125 Å. On face B of the axon surface membrane the complementary image of these structures is seen. The projections of the Schwann cell surface membrane also contain groupings of globules; however, these differ from those in the axonal projections in size, pattern of aggregation, and fracture properties. Several possible interpretations of the meaning of these membrane specializations could be proposed. They could be: (a) structures involved in the mechanism of excitation, (b) regions of presumed metabolic couplings, and (c) areas of cell-to-cell adhesion.

Full Text

The Full Text of this article is available as a PDF (1.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armstrong C. M. Time course of TEA(+)-induced anomalous rectification in squid giant axons. J Gen Physiol. 1966 Nov;50(2):491–503. doi: 10.1085/jgp.50.2.491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Autilio-Gambetti L., Gambetti P., Shafer B. RNA and axonal flow. Biochemical and autoradiographic study in the rabbit optic system. Brain Res. 1973 Apr 27;53(2):387–398. doi: 10.1016/0006-8993(73)90223-0. [DOI] [PubMed] [Google Scholar]
  3. Bezanilla F., Armstrong C. M. Negative conductance caused by entry of sodium and cesium ions into the potassium channels of squid axons. J Gen Physiol. 1972 Nov;60(5):588–608. doi: 10.1085/jgp.60.5.588. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Branton D. Fracture faces of frozen membranes. Proc Natl Acad Sci U S A. 1966 May;55(5):1048–1056. doi: 10.1073/pnas.55.5.1048. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Camejo G., Villegas G. M., Barnola F. V., Villegas R. Characterization of two different membrane fractions isolated from the first stellar nerves of the squid Dosidicus gigas. Biochim Biophys Acta. 1969;193(2):247–259. doi: 10.1016/0005-2736(69)90186-2. [DOI] [PubMed] [Google Scholar]
  6. Chlapowski F. J., Bonneville M. A., Staehelin L. A. Lumenal plasma membrane of the urinary bladder. II. Isolation and structure of membrane components. J Cell Biol. 1972 Apr;53(1):92–104. doi: 10.1083/jcb.53.1.92. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Deamer D. W., Branton D. Fracture planes in an ice-bilayer model membrane system. Science. 1967 Nov 3;158(3801):655–657. doi: 10.1126/science.158.3801.655. [DOI] [PubMed] [Google Scholar]
  8. Dermietzel R., Brettschneider H. Eine Untersuchung peripherer vegetativer Nervenfasern des Ductus deferens mit Hilfe der Gefrierätztechnik. Z Zellforsch Mikrosk Anat. 1973 Feb 9;137(1):111–124. [PubMed] [Google Scholar]
  9. Devine C. E., Simpson F. O., Bertaud W. S. Freeze-etch studies on the innervation of mesenteric arteries and vas deferens. J Cell Sci. 1971 Sep;9(2):411–425. doi: 10.1242/jcs.9.2.411. [DOI] [PubMed] [Google Scholar]
  10. Engelman D. M. The molecular structure of the membrane of Acholeplasma laidlawii. Chem Phys Lipids. 1972 May;8(4):298–302. doi: 10.1016/0009-3084(72)90058-8. [DOI] [PubMed] [Google Scholar]
  11. Hayashi M., Muramatsu T., Hara I. Surface properties of synthetic phospholipids. Biochim Biophys Acta. 1972 Jan 17;255(1):98–106. doi: 10.1016/0005-2736(72)90011-9. [DOI] [PubMed] [Google Scholar]
  12. Hille B. The permeability of the sodium channel to organic cations in myelinated nerve. J Gen Physiol. 1971 Dec;58(6):599–619. doi: 10.1085/jgp.58.6.599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Holtzman E., Freeman A. R., Kashner L. A. A cytochemical and electron microscope study of channels in the Schwann cells surrounding lobster giant axons. J Cell Biol. 1970 Feb;44(2):438–445. doi: 10.1083/jcb.44.2.438. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Keynes R. D., Ritchie J. M., Rojas E. The binding of tetrodotoxin to nerve membranes. J Physiol. 1971 Feb;213(1):235–254. doi: 10.1113/jphysiol.1971.sp009379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. McNutt N. S., Weinstein R. S. Membrane ultrastructure at mammalian intercellular junctions. Prog Biophys Mol Biol. 1973;26:45–101. doi: 10.1016/0079-6107(73)90017-5. [DOI] [PubMed] [Google Scholar]
  16. PETERSON R. P., PEPE F. The fine structure of inhibitory synapses in the crayfish. J Biophys Biochem Cytol. 1961 Oct;11:157–169. doi: 10.1083/jcb.11.1.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Peracchia C. Low resistance junctions in crayfish. I. Two arrays of globules in junctional membranes. J Cell Biol. 1973 Apr;57(1):66–76. doi: 10.1083/jcb.57.1.66. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Peracchia C. Low resistance junctions in crayfish. II. Structural details and further evidence for intercellular channels by freeze-fracture and negative staining. J Cell Biol. 1973 Apr;57(1):54–65. doi: 10.1083/jcb.57.1.54. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Peracchia C., Mittler B. S. Fixation by means of glutaraldehyde-hydrogen peroxide reaction products. J Cell Biol. 1972 Apr;53(1):234–238. doi: 10.1083/jcb.53.1.234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Peracchia C., Robertson J. D. Increase in osmiophilia of axonal membranes of crayfish as a result of electrical stimulation, asphyxia, or treatment with reducing agents. J Cell Biol. 1971 Oct;51(1):223–239. doi: 10.1083/jcb.51.1.223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Pinto da Silva P., Branton D. Membrane splitting in freeze-ethching. Covalently bound ferritin as a membrane marker. J Cell Biol. 1970 Jun;45(3):598–605. doi: 10.1083/jcb.45.3.598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Pinto da Silva P., Douglas S. D., Branton D. Localization of A antigen sites on human erythrocyte ghosts. Nature. 1971 Jul 16;232(5307):194–196. doi: 10.1038/232194a0. [DOI] [PubMed] [Google Scholar]
  23. Pinto da Silva P. Membrane intercalated particles in human erythrocyte ghosts: sites of preferred passage of water molecules at low temperature. Proc Natl Acad Sci U S A. 1973 May;70(5):1339–1343. doi: 10.1073/pnas.70.5.1339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sabatini M. T., Dipolo R., Villegas R. Adenosine triphosphatase activity in the membranes of the squid nerve fiber. J Cell Biol. 1968 Jul;38(1):176–183. doi: 10.1083/jcb.38.1.176. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sato T. A modified method for lead staining of thin sections. J Electron Microsc (Tokyo) 1968;17(2):158–159. [PubMed] [Google Scholar]
  26. Singer M., Green M. R. Autoradiographic studies of uridine incorporation in peripheral nerve of the newt, Triturus. J Morphol. 1968 Mar;124(3):321–344. doi: 10.1002/jmor.1051240306. [DOI] [PubMed] [Google Scholar]
  27. Singer M., Salpeter M. M. The transport of 3H-l-histidine through the Schwann and myelin sheath into the axon, including a reevaluation of myelin function. J Morphol. 1966 Nov;120(3):281–315. doi: 10.1002/jmor.1051200305. [DOI] [PubMed] [Google Scholar]
  28. Small D. M. Phase equilibria and structure of dry and hydrated egg lecithin. J Lipid Res. 1967 Nov;8(6):551–557. [PubMed] [Google Scholar]
  29. Staehelin L. A. Three types of gap junctions interconnecting intestinal epithelial cells visualized by freeze-etching. Proc Natl Acad Sci U S A. 1972 May;69(5):1318–1321. doi: 10.1073/pnas.69.5.1318. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Tillack T. W., Scott R. E., Marchesi V. T. The structure of erythrocyte membranes studied by freeze-etching. II. Localization of receptors for phytohemagglutinin and influenza virus to the intramembranous particles. J Exp Med. 1972 Jun 1;135(6):1209–1227. doi: 10.1084/jem.135.6.1209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Vergara J., Longley W., Robertson J. D. A hexagonal arrangement of subunits in membrane of mouse urinary bladder. J Mol Biol. 1969 Dec 28;46(3):593–596. doi: 10.1016/0022-2836(69)90200-9. [DOI] [PubMed] [Google Scholar]
  32. Villegas G. M. Electron microscopic study of the giant nerve fiber of the giant squid Dosidicus gigas. J Ultrastruct Res. 1969 Mar;26(5):501–504. doi: 10.1016/s0022-5320(69)90054-9. [DOI] [PubMed] [Google Scholar]
  33. Villegas G. M., Villegas R. Ultrastructural studies of the squid nerve fibers. J Gen Physiol. 1968 May;51(5 Suppl):44S+–44S+. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES