Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1974 Apr 1;61(1):45–55. doi: 10.1083/jcb.61.1.45

CHARACTERIZATION OF LYMPHOCYTE TRANSFORMATION INDUCED BY ZINC IONS

Nathan A Berger 1, Sister Ann Marie Skinner 1
PMCID: PMC2109266  PMID: 4819306

Abstract

Lymphocyte cultures from all normal human adults are stimulated by zinc ions to increase DNA and RNA synthesis and undergo blast transformation. Optimal stimulation occurs at 0.1 mM Zn++. Examination of the effects of other divalent cations reveals that 0.01 mM Hg++ also stimulates lymphocyte DNA synthesis. Ca++ and Mg++ do not affect DNA synthesis in this culture system, while Mn++, Co++, Cd++, Cu++, and Ni++ at concentrations of 10-7–10-3 M are inhibitory. DNA and RNA synthesis and blast transformation begin to increase after cultures are incubated for 2–3 days with Zn++ and these processes reach a maximum rate after 6 days. The increase in Zn++-stimulated lymphocyte DNA synthesis is prevented by rendering cells incapable of DNA-dependent RNA synthesis with actinomycin D or by blocking protein synthesis with cycloheximide or puromycin. Zn++-stimulated DNA synthesis is also partially inhibited by 5'-AMP and chloramphenicol. Zn++ must be present for the entire 6-day culture period to produce maximum stimulation of DNA synthesis. In contrast to its ability to independently stimulate DNA synthesis, 0.1 mM Zn++ inhibits DNA synthesis in phytohemagglutinin-stimulated lymphocytes and L1210 lymphoblasts.

Full Text

The Full Text of this article is available as a PDF (756.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alford R. H. Metal cation requirements for phytohemagglutinin-induced transformation of human peripheral blood lymphocytes. J Immunol. 1970 Mar;104(3):698–703. [PubMed] [Google Scholar]
  2. Boldt S., Skinner A. M., Kornfeld S. Studies of two subpopulations of human lymphocytes differing in responsiveness to concanavalin A. J Clin Invest. 1972 Dec;51(12):3225–3234. doi: 10.1172/JCI107149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brown R. F., Umeda T., Takai S. I., Lieberman I. Effect of inhibitors of protein synthesis on DNA formation in liver. Biochim Biophys Acta. 1970 May 21;209(1):49–53. doi: 10.1016/0005-2787(70)90660-x. [DOI] [PubMed] [Google Scholar]
  4. Börjeson J., Reisfeld R., Chessin L. N., Welsh P. D., Douglas S. D. Studies on human peripheral blood lymphocytes in vitro. I. Biological and physicochemical properties of the pokeweed mitogen. J Exp Med. 1966 Nov 1;124(5):859–872. doi: 10.1084/jem.124.5.859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chesters J. K. The role of zinc ions in the transformation of lymphocytes by phytohaemagglutinin. Biochem J. 1972 Nov;130(1):133–139. doi: 10.1042/bj1300133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Coulson A. S., Chalmers D. G. Response of human blood lymphocytes to tuberculin PPD in tissue culture. Immunology. 1967 Apr;12(4):417–429. [PMC free article] [PubMed] [Google Scholar]
  7. Firkin F. C., Linnane A. W. Differential effects of chloramphenicol on the growth and respiration of mammalian cells. Biochem Biophys Res Commun. 1968 Aug 13;32(3):398–402. doi: 10.1016/0006-291x(68)90674-8. [DOI] [PubMed] [Google Scholar]
  8. Marshall W. H., Valentine F. T., Lawrence H. S. Cellular immunity in vitro. Clonal proliferation of antigen-stimulated lymphocytes. J Exp Med. 1969 Aug 1;130(2):327–343. doi: 10.1084/jem.130.2.327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Mendelsohn J., Skinner A., Kornfeld S. The rapid induction by phytohemagglutinin of increased alpha-aminoisobutyric acid uptake by lymphocytes. J Clin Invest. 1971 Apr;50(4):818–826. doi: 10.1172/JCI106553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Möller G. Induction of DNA synthesis in human lymphocytes: interaction between non-specific mitogens and antigens. Immunology. 1970 Oct;19(4):583–598. [PMC free article] [PubMed] [Google Scholar]
  11. Parisi A. F., Vallee B. L. Zinc metalloenzymes: characteristics and significance in biology and medicine. Am J Clin Nutr. 1969 Sep;22(9):1222–1239. doi: 10.1093/ajcn/22.9.1222. [DOI] [PubMed] [Google Scholar]
  12. Pogo B. G. Early events in lymphocyte transformation by phytohemagglutinin. I. DNA-dependent RNA polymerase activities in isolated lymphocyte nuclei. J Cell Biol. 1972 Jun;53(3):635–641. doi: 10.1083/jcb.53.3.635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Rubin H. Inhibition of DNA synthesis in animal cells by ethylene diamine tetraacetate, and its reversal by zinc. Proc Natl Acad Sci U S A. 1972 Mar;69(3):712–716. doi: 10.1073/pnas.69.3.712. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Rühl H., Kirchner H., Bochert G. Kinetics of the Zn 2+ - stimulation of human peripheral lmphocytes in vitro. Proc Soc Exp Biol Med. 1971 Jul;137(3):1089–1092. [PubMed] [Google Scholar]
  15. Slater J. P., Mildvan A. S., Loeb L. A. Zinc in DNA polymerases. Biochem Biophys Res Commun. 1971 Jul 2;44(1):37–43. doi: 10.1016/s0006-291x(71)80155-9. [DOI] [PubMed] [Google Scholar]
  16. Smith J. W., Steiner A. L., Parker C. W. Human lymphocytic metabolism. Effects of cyclic and noncyclic nucleotides on stimulation by phytohemagglutinin. J Clin Invest. 1971 Feb;50(2):442–448. doi: 10.1172/JCI106511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Sugino A., Hirose S., Okazaki R. RNA-linked nascent DNA fragments in Escherichia coli. Proc Natl Acad Sci U S A. 1972 Jul;69(7):1863–1867. doi: 10.1073/pnas.69.7.1863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Younkin L. H. In vitro response of lymphocytes to phytohemagglutinin (PHA) as studied with antiserum to PHA. I. Initiation period, daughter-cell proliferation, and restimulation. Exp Cell Res. 1972 Nov;75(1):1–10. doi: 10.1016/0014-4827(72)90512-5. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES