Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1974 Apr 1;61(1):134–145. doi: 10.1083/jcb.61.1.134

HISTONE F1 OF TETRAHYMENA MACRONUCLEI

Unique Electrophoretic Properties and Phosphorylation of F1 in an Amitotic Nucleus

Martin A Gorovsky 1, Josephine Bowen Keevert 1, Gloria Lorick Pleger 1
PMCID: PMC2109276  PMID: 4206592

Abstract

Histone fraction F1 has been isolated and purified from macronuclei of the ciliated protozoan, Tetrahymena pyriformis. In many respects, Tetrahymena F1 is similar to that of other organisms. It is the only Tetrahymena histone soluble in 5% perchloric acid or 5% trichloroacetic acid, has a higher molecular weight than any other Tetrahymena histone, is the histone most easily dissociated from Tetrahymena chromatin, and is susceptible to specific proteolytic cleavage. However, unlike F1 in all other organisms, Tetrahymena F1 is not the slowest-migrating histone fraction when analyzed by polyacrylamide gel electrophoresis at low pH. Tetrahymena F1 also exhibits unusual behavior in sodium dodecyl sulfate-containing polyacrylamide gels, migrating faster than calf thymus F1 at pH 10, and slower than calf thymus F1 at pH 7.6. Tetrahymena F1 was found to be highly phosphorylated in rapidly growing cells, suggesting that the relationship between cell replication and F1 phosphorylation previously observed in mammalian cells may extend to all eukaryotes. The observation that extensive F1 phosphorylation occurs in macronuclei, which divide amitotically, argues against a unique role for F1 phosphorylation in the process of chromosome condensation at mitosis.

Full Text

The Full Text of this article is available as a PDF (711.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balhorn R., Balhorn M., Chalkley R. Lysine-rach histone phosphorylation and hyperplasia in the developing rat. Dev Biol. 1972 Oct;29(2):199–203. doi: 10.1016/0012-1606(72)90056-5. [DOI] [PubMed] [Google Scholar]
  2. Balhorn R., Chalkley R., Granner D. Lysine-rich histone phosphorylation. A positive correlation with cell replication. Biochemistry. 1972 Mar 14;11(6):1094–1098. doi: 10.1021/bi00756a023. [DOI] [PubMed] [Google Scholar]
  3. Bartley J., Chalkley R. Further studies of a thymus nucleohistone-associated protease. J Biol Chem. 1970 Sep 10;245(17):4286–4292. [PubMed] [Google Scholar]
  4. Bradbury E. M., Inglis R. J., Matthews H. R., Sarner N. Phosphorylation of very-lysine-rich histone in Physarum polycephalum. Correlation with chromosome condensation. Eur J Biochem. 1973 Feb 15;33(1):131–139. doi: 10.1111/j.1432-1033.1973.tb02664.x. [DOI] [PubMed] [Google Scholar]
  5. Bustin M., Cole R. D. Species and organ specificity in very lysine-rich histones. J Biol Chem. 1968 Sep 10;243(17):4500–4505. [PubMed] [Google Scholar]
  6. Bustin M., Stollar B. D. Immunochemical specificity in lysine-rich histone subfractions. J Biol Chem. 1972 Sep 25;247(18):5716–5721. [PubMed] [Google Scholar]
  7. Cohen L. H., Gotchel B. V. Histones of polytene and nonpolytene nuclei of Drosophila melanogaster. J Biol Chem. 1971 Mar 25;246(6):1841–1848. [PubMed] [Google Scholar]
  8. DeLange R. J., Hooper J. A., Smith E. L. Complete amino-acid sequence of calf-thymus histone 3. Proc Natl Acad Sci U S A. 1972 Apr;69(4):882–884. doi: 10.1073/pnas.69.4.882. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fambrough D. M., Bonner J. Limited molecular heterogeneity of plant histones. Biochim Biophys Acta. 1969 Feb 4;175(1):113–122. doi: 10.1016/0005-2795(69)90150-0. [DOI] [PubMed] [Google Scholar]
  10. Gorovsky M. A. Macro- and micronuclei of Tetrahymena pyriformis: a model system for studying the structure and function of eukaryotic nuclei. J Protozool. 1973 Feb;20(1):19–25. doi: 10.1111/j.1550-7408.1973.tb05995.x. [DOI] [PubMed] [Google Scholar]
  11. Gorovsky M. A., Pleger G. L., Keevert J. B., Johmann C. A. Studies on histone fraction F2A1 in macro- and micronuclei of Tetrahymena pyriformis. J Cell Biol. 1973 Jun;57(3):773–781. doi: 10.1083/jcb.57.3.773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gutierrez-Cernosek R. M., Hnilica L. S. Histone synthesis and phosphorylation in regenerating rat liver. Biochim Biophys Acta. 1971 Oct 14;247(2):348–354. doi: 10.1016/0005-2787(71)90682-4. [DOI] [PubMed] [Google Scholar]
  13. Hamana K., Iwai K. Fractionation and characterization of Tetrahymena histone in comparison with mammalian histones. J Biochem. 1971 Jun;69(6):1097–1111. doi: 10.1093/oxfordjournals.jbchem.a129563. [DOI] [PubMed] [Google Scholar]
  14. Iwai K., Hayashi H., Ishikawa K. Calf thymus lysine- and serine-rich histone. 3. Complete amino acid sequence and its implication for interactions of histones with DNA. J Biochem. 1972 Aug;72(2):357–367. doi: 10.1093/oxfordjournals.jbchem.a129911. [DOI] [PubMed] [Google Scholar]
  15. Johns E. W. Studies on histones. 7. Preparative methods for histone fractions from calf thymus. Biochem J. 1964 Jul;92(1):55–59. doi: 10.1042/bj0920055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kinkade J. M., Jr, Cole R. D. A structural comparison of different lysine-rich histones of calf thymus. J Biol Chem. 1966 Dec 25;241(24):5798–5805. [PubMed] [Google Scholar]
  17. Kinkade J. M., Jr, Cole R. D. The resolution of four lysine-rich histones derived from calf thymus. J Biol Chem. 1966 Dec 25;241(24):5790–5797. [PubMed] [Google Scholar]
  18. Kinkade J. M., Jr Qualitative species differences and quantitative tissue differences in the distribution of lysine-rich histones. J Biol Chem. 1969 Jun 25;244(12):3375–3386. [PubMed] [Google Scholar]
  19. Kleinsmith L. J., Allfrey V. G., Mirsky A. E. Phosphoprotein metabolism in isolated lymphocyte nuclei. Proc Natl Acad Sci U S A. 1966 May;55(5):1182–1189. doi: 10.1073/pnas.55.5.1182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lake R. S., Goidl J. A., Salzman N. P. F1-histone modification at metaphase in Chinese hamster cells. Exp Cell Res. 1972 Jul;73(1):113–121. doi: 10.1016/0014-4827(72)90108-5. [DOI] [PubMed] [Google Scholar]
  21. Meisler M. H., Langan T. A. Characterization of a phosphatase specific for phosphorylated histones and protamine. J Biol Chem. 1969 Sep 25;244(18):4961–4968. [PubMed] [Google Scholar]
  22. Mohberg J., Rusch H. P. Isolation of the nuclear histones from the Myxomycete, Physarum polycephalum. Arch Biochem Biophys. 1969 Nov;134(2):577–589. doi: 10.1016/0003-9861(69)90320-8. [DOI] [PubMed] [Google Scholar]
  23. Nelson R. D., Yunis J. J. Species and tissue specificity of very lysine-rich and serine-rich histones. Exp Cell Res. 1969 Oct;57(2):311–318. doi: 10.1016/0014-4827(69)90155-4. [DOI] [PubMed] [Google Scholar]
  24. Oliver D., Balhorn R., Granner D., Chalkley R. Molecular nature of F 1 histone phosphorylation in cultured hepatoma cells. Biochemistry. 1972 Oct 10;11(21):3921–3925. doi: 10.1021/bi00771a014. [DOI] [PubMed] [Google Scholar]
  25. Oliver D., Chalkley R. An electrophoretic analysis of Drosophila histones. I. Isolation and identification. Exp Cell Res. 1972 Aug;73(2):295–302. doi: 10.1016/0014-4827(72)90051-1. [DOI] [PubMed] [Google Scholar]
  26. Oliver D., Sommer K. R., Panyim S., Spiker S., Chalkley R. A modified procedure for fractionating histones. Biochem J. 1972 Sep;129(2):349–353. doi: 10.1042/bj1290349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Panyim S., Chalkley R. High resolution acrylamide gel electrophoresis of histones. Arch Biochem Biophys. 1969 Mar;130(1):337–346. doi: 10.1016/0003-9861(69)90042-3. [DOI] [PubMed] [Google Scholar]
  28. Panyim S., Chalkley R. The molecular weights of vertebrate histones exploiting a modified sodium dodecyl sulfate electrophoretic method. J Biol Chem. 1971 Dec 25;246(24):7557–7560. [PubMed] [Google Scholar]
  29. Phelan J. J., Subirana J. A., Cole R. D. An unusual group of lysine-rich histones from gonads of a sea cucumber, Holothuria tubulosa. Eur J Biochem. 1972 Nov 21;31(1):63–68. doi: 10.1111/j.1432-1033.1972.tb02501.x. [DOI] [PubMed] [Google Scholar]
  30. Rall S. C., Cole R. D. Amino acid sequence and sequence variability of the amino-terminal regions of lysine-rich histones. J Biol Chem. 1971 Dec 10;246(23):7175–7190. [PubMed] [Google Scholar]
  31. Sheridan W. F., Stern H. Histones of meiosis. Exp Cell Res. 1967 Feb;45(2):323–335. doi: 10.1016/0014-4827(67)90183-8. [DOI] [PubMed] [Google Scholar]
  32. Sherod D., Johnson G., Chalkley R. Phosphorylation of mouse ascites tumor cell lysine-rich histone. Biochemistry. 1970 Nov 10;9(23):4611–4615. doi: 10.1021/bi00825a022. [DOI] [PubMed] [Google Scholar]
  33. Smith E. L., DeLange R. J., Bonner J. Chemistry and biology of the histones. Physiol Rev. 1970 Apr;50(2):159–170. doi: 10.1152/physrev.1970.50.2.159. [DOI] [PubMed] [Google Scholar]
  34. Stevely W. S., Stocken L. A. Variations in the phosphate content of histone F1 in normal and irradiated tissues. Biochem J. 1968 Nov;110(2):187–191. doi: 10.1042/bj1100187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Subirana J. A., Unzeta M. Phosphorylation of histone-like components during spermiogenesis in the sea urchin. FEBS Lett. 1972 Nov 15;28(1):112–114. doi: 10.1016/0014-5793(72)80689-6. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES