Abstract
The role of microtubules and microtubule nucleating sites in the unicell, Ochromonas has been examined through the use of two mitotic inhibitors, isopropyl N-phenylcarbamate (IPC) and isopropyl N-3-chlorophenyl carbamate (CIPC). Although IPC and CIPC have little or no effect on intact microtubules, the assembly of three separate sets of microtubules in Ochromonas has been found to be differentially affected by IPC and CIPC. The assembly of flagellar microtubules after mechanical deflagellation is partially inhibited; the reassembly of rhizoplast microtubules after pressure depolymerization is totally inhibited (however, macrotubules may form at the sites of microtubule initiation or elsewhere); and, the reassembly of the beak set of microtubules after pressure depolymerization may be unaffected although similar concentrations of IPC and CICP completely inhibit microtubule regeneration on the rhizoplast. These effects on microtubule assembly, either inhibitory or macrotubule inducing, are fully reversible. The kinetics of inhibition and reversal are found to be generally similar for both flagellar and cell shape regeneration. Incorporation data suggest that neither IPC nor CIPC has significant effects on protein synthesis in short term experiments. Conversely, inhibiting protein synthesis with cycloheximide has little effect on microtubule regeneration when IPC or CIPC is removed. Although the exact target for IPC and CIPC action remains uncertain, the available evidence suggests that the microtubule protein pool or the microtubule nucleating sites are specifically and reversibly affected. Comparative experiments using the mitotic inhibitor colchicine indicate some similarities and differences in its mode of action with respect to that of IPC and CIPC on assembly and disassembly of microtubules in these cells.
Full Text
The Full Text of this article is available as a PDF (2.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allison A. C., Hulands G. H., Nunn J. F., Kitching J. A., Macdonald A. C. The effect of inhalational anaesthetics on the microtubular system in Actinosphaerium nucleofilum. J Cell Sci. 1970 Sep;7(2):483–499. doi: 10.1242/jcs.7.2.483. [DOI] [PubMed] [Google Scholar]
- Balasubramanian D., Wetlaufer D. B. Reversible alteration of the structure of globular proteins by anesthetic agents. Proc Natl Acad Sci U S A. 1966 Apr;55(4):762–765. doi: 10.1073/pnas.55.4.762. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Banerjee S., Margulis L. Reversible inhibition of cilia regeneration in Stentor coeruleus by isopropyl-n-phenyl carbamate. Nature. 1969 Oct 11;224(5215):180–181. doi: 10.1038/224180a0. [DOI] [PubMed] [Google Scholar]
- Borisy G. G., Olmsted J. B., Klugman R. A. In vitro aggregation of cytoplasmic microtubule subunits. Proc Natl Acad Sci U S A. 1972 Oct;69(10):2890–2894. doi: 10.1073/pnas.69.10.2890. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bouck G. B., Brown D. L. Microtubule biogenesis and cell shape in Ochromonas. I. The distribution of cytoplasmic and mitotic microtubules. J Cell Biol. 1973 Feb;56(2):340–359. doi: 10.1083/jcb.56.2.340. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown D. L., Bouck G. B. Microtubule biogenesis and cell shape in Ochromonas. II. The role of nucleating sites in shape development. J Cell Biol. 1973 Feb;56(2):360–378. doi: 10.1083/jcb.56.2.360. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burton P. R., Fernandez H. L. Delineation by lanthanum staining of filamentous elements associated with the surfaces of axonal microtubules. J Cell Sci. 1973 Mar;12(2):567–583. doi: 10.1242/jcs.12.2.567. [DOI] [PubMed] [Google Scholar]
- Hepler P. K., Jackson W. T. Isopropyl N-phenylcarbamate affects spindle microtubule orientation in dividing endosperm cells of Haemanthus katherinae Baker. J Cell Sci. 1969 Nov;5(3):727–743. doi: 10.1242/jcs.5.3.727. [DOI] [PubMed] [Google Scholar]
- Hinkley R. E., Samson F. E. Anesthetic-induced transformation of axonal microtubules. J Cell Biol. 1972 Apr;53(1):258–263. doi: 10.1083/jcb.53.1.258. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Inoué S., Sato H. Cell motility by labile association of molecules. The nature of mitotic spindle fibers and their role in chromosome movement. J Gen Physiol. 1967 Jul;50(6 Suppl):259–292. [PMC free article] [PubMed] [Google Scholar]
- Kiermayer O., Hepler P. K. Hemmung der Kernmigration von Jochalgen (Micrasterias) durch Isopropyl-N-phenylcarbamat. Naturwissenschaften. 1970 May;57(5):252–252. doi: 10.1007/BF01010285. [DOI] [PubMed] [Google Scholar]
- Mann J. D., Cota-Robles E., Yung K. H., Pu M., Haid H. Phenylurethane herbicides: inhibitors of changes in metabolic state. I. Botanical aspects. Biochim Biophys Acta. 1967 Mar 29;138(1):133–139. doi: 10.1016/0005-2787(67)90593-x. [DOI] [PubMed] [Google Scholar]
- Mann J. D., Jordan L. S., Day B. E. A survey of herbicides for their effect upon protein synthesis. Plant Physiol. 1965 Sep;40(5):840–843. doi: 10.1104/pp.40.5.840. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marsland D. Anti-mitotic effects of colchicine and hydrostatic pressure; synergistic action on the cleaving eggs of Lytechinus variegatus. J Cell Physiol. 1966 Apr;67(2):333–338. doi: 10.1002/jcp.1040670213. [DOI] [PubMed] [Google Scholar]
- REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rosenbaum J. L., Child F. M. Flagellar regeneration in protozoan flagellates. J Cell Biol. 1967 Jul;34(1):345–364. doi: 10.1083/jcb.34.1.345. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rosenbaum J. L., Moulder J. E., Ringo D. L. Flagellar elongation and shortening in Chlamydomonas. The use of cycloheximide and colchicine to study the synthesis and assembly of flagellar proteins. J Cell Biol. 1969 May;41(2):600–619. doi: 10.1083/jcb.41.2.600. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sanger J. M., Jackson W. T. Fine structure study of pollen development in Haemanthus katherinae Baker. II. Microtubules and elongation of the generative cells. J Cell Sci. 1971 Mar;8(2):303–315. doi: 10.1242/jcs.8.2.303. [DOI] [PubMed] [Google Scholar]
- Spurr A. R. A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res. 1969 Jan;26(1):31–43. doi: 10.1016/s0022-5320(69)90033-1. [DOI] [PubMed] [Google Scholar]
- Tilney L. G., Porter K. R. Studies on the microtubules in heliozoa. II. The effect of low temperature on these structures in the formation and maintenance of the axopodia. J Cell Biol. 1967 Jul;34(1):327–343. doi: 10.1083/jcb.34.1.327. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tyson G. E., Bulger R. E. Effect of vinblastine sulfate on the fine structure of cells of the rat renal corpuscle. Am J Anat. 1972 Nov;135(3):319–343. doi: 10.1002/aja.1001350303. [DOI] [PubMed] [Google Scholar]
- Tyson G. E., Bulger R. E. Vinblastine-induced paracrystals and unusually large microtubules (macrotubules) in rat renal cells. Z Zellforsch Mikrosk Anat. 1973 Aug 14;141(4):443–458. doi: 10.1007/BF00307116. [DOI] [PubMed] [Google Scholar]