Abstract
Mitochondria isolated from the hepatopancreas of the blue crab Callinectes sapidus show up to 12-fold stimulation of respiration on addition of Ca2+, which is accompanied by Ca2+ accumulation (Ca2+:site = 1.9) and H+ ejection (H+:Ca2+ = 0.85). Sr2+ and Mn2+ are also accumulated; Mg2+ is not. A strongly hypertonic medium (383 mosM), Mg2+, and phosphate are required for maximal Ca2+ uptake. Ca2+ uptake takes precedence over oxidative phosphorylation of ADP for respiratory energy. Once Ca2+ is accumulated by the crab mitochondria, it is stable and only very slowly released, even by uncoupling agents. ATP hydrolysis also supports Ca2+ uptake. Respiration-inhibited crab hepatopancreas mitochondria show both high-affinity and low-affinity Ca2+-binding sites, which are inactive in the presence of uncoupling agents. Crab hepatopancreas mitochondria have an enormous capacity for accumulation of Ca2+, up to 5,500 ng-atoms Ca2+ per mg protein, with an equivalent amount of phosphate. Freshly isolated mitochondria contain very large amounts of Ca2+, Mg2+, phosphate, K+, and Na+; their high Ca2+ content is a reflection of the vary large amount of extra-mitochondrial Ca2+ in the whole tissue. Electron microscopy of crab mitochondria loaded with Ca2+ and phosphate showed large electron-dense deposits, presumably of precipitated calcium phosphate. They consisted of bundles of needle-like crystals, whereas Ca2+-loaded rat liver mitochondria show only amorphous deposits of calcium phosphate under similar conditions. The very pronounced capacity of crab hepatopancreas mitochondria for transport of Ca2+ appears to be adapted to a role in the storage and release of Ca2+ during the molting cycle of this crustacean.
Full Text
The Full Text of this article is available as a PDF (1.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ali S. Y., Sajdera S. W., Anderson H. C. Isolation and characterization of calcifying matrix vesicles from epiphyseal cartilage. Proc Natl Acad Sci U S A. 1970 Nov;67(3):1513–1520. doi: 10.1073/pnas.67.3.1513. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Becker G. L., Chen C. H., Greenawalt J. W., Lehninger A. L. Calcium phosphate granules in the hepatopancreas of the blue crab Callinectes sapidus. J Cell Biol. 1974 May;61(2):316–326. doi: 10.1083/jcb.61.2.316. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Borle A. B. Calcium metabolism at the cellular level. Fed Proc. 1973 Sep;32(9):1944–1950. [PubMed] [Google Scholar]
- CARAFOLI E. ACTIVE ACCUMULATION OF SR2+ BY RAT-LIVER MITOCHONDRIA. 3. STIMULATION OF RESPIRATION BY SR2+ AND ITS STOICHIOMETRY. Biochim Biophys Acta. 1965 Jan 4;97:107–117. doi: 10.1016/0304-4165(65)90274-6. [DOI] [PubMed] [Google Scholar]
- CARAFOLI E., ROSSI C. S., LEHNINGER A. L. UPTAKE OF ADENINE NUCLEOTIDES BY RESPIRING MITOCHONDRIA DURING ACTIVE ACCUMULATION OF CA++ AND PHOSPHATE. J Biol Chem. 1965 May;240:2254–2261. [PubMed] [Google Scholar]
- CHANCE B., PARSONS D. F. CYTOCHROME FUNCTION IN RELATION TO INNER MEMBRANE STRUCTURE OF MITOCHONDRIA. Science. 1963 Nov 29;142(3596):1176–1180. doi: 10.1126/science.142.3596.1176. [DOI] [PubMed] [Google Scholar]
- CHANCE B. THE ENERGY-LINKED REACTION OF CALCIUM WITH MITOCHONDRIA. J Biol Chem. 1965 Jun;240:2729–2748. [PubMed] [Google Scholar]
- Carafoli E., Hansford R. G., Sackton B., Lehninger A. L. Interaction of Ca2+ with blowfly flight muscle mitochondria. J Biol Chem. 1971 Feb 25;246(4):964–972. [PubMed] [Google Scholar]
- Carafoli E., Lehninger A. L. A survey of the interaction of calcium ions with mitochondria from different tissues and species. Biochem J. 1971 May;122(5):681–690. doi: 10.1042/bj1220681. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen C. H., Lehninger A. L. Ca 2+ transport activity in mitochondria from some plant tissues. Arch Biochem Biophys. 1973 Jul;157(1):183–196. doi: 10.1016/0003-9861(73)90404-9. [DOI] [PubMed] [Google Scholar]
- Chen C. H., Lehninger A. L. Respiration and phosphorylation by mitochondria from the hepatopancreas of the blue crab (Callinectes sapidus). Arch Biochem Biophys. 1973 Jan;154(1):449–459. doi: 10.1016/0003-9861(73)90078-7. [DOI] [PubMed] [Google Scholar]
- Cohn D. V., Bawdon R., Eller G. The effect of parathyroid hormone in vivo on the accumulation of calcium and phosphate by kidney and on kidney mitochondrial function. J Biol Chem. 1967 Mar 25;242(6):1253–1264. [PubMed] [Google Scholar]
- GONZALES F., KARNOVSKY M. J. Electron microscopy of osteoclasts in healing fracturees of rat bone. J Biophys Biochem Cytol. 1961 Feb;9:299–316. doi: 10.1083/jcb.9.2.299. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GRANT D. R. Reagent stability in Rosen's ninhydrin method of analysis for amino acids. Anal Biochem. 1963 Jul;6:109–110. doi: 10.1016/0003-2697(63)90013-7. [DOI] [PubMed] [Google Scholar]
- GREENAWALT J. W., ROSSI C. S., LEHNINGER A. L. EFFECT OF ACTIVE ACCUMULATION OF CALCIUM AND PHOSPHATE IONS ON THE STRUCTURE OF RAT LIVER MITOCHONDRIA. J Cell Biol. 1964 Oct;23:21–38. doi: 10.1083/jcb.23.1.21. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Greenawalt J. W., Carafoli E. Electron microscope studies on the active accumulation of Sr++ by rat-liver mitochondria. J Cell Biol. 1966 Apr;29(1):37–61. doi: 10.1083/jcb.29.1.37. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LUFT J. H. Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol. 1961 Feb;9:409–414. doi: 10.1083/jcb.9.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lehninger A. L., Carafoli E., Rossi C. S. Energy-linked ion movements in mitochondrial systems. Adv Enzymol Relat Areas Mol Biol. 1967;29:259–320. doi: 10.1002/9780470122747.ch6. [DOI] [PubMed] [Google Scholar]
- Lehninger A. L. Mitochondria and calcium ion transport. Biochem J. 1970 Sep;119(2):129–138. doi: 10.1042/bj1190129. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mela L., Chance B. Spectrophotometric measurements of the kinetics of Ca2+ and Mn2+ accumulation in mitochondria. Biochemistry. 1968 Nov;7(11):4059–4063. doi: 10.1021/bi00851a038. [DOI] [PubMed] [Google Scholar]
- Moore C. L. Specific inhibition of mitochondrial Ca++ transport by ruthenium red. Biochem Biophys Res Commun. 1971 Jan 22;42(2):298–305. doi: 10.1016/0006-291x(71)90102-1. [DOI] [PubMed] [Google Scholar]
- Parsons D. F. Mitochondrial Structure: Two Types of Subunits on Negatively Stained Mitochondrial Membranes. Science. 1963 May 31;140(3570):985–987. doi: 10.1126/science.140.3570.985. [DOI] [PubMed] [Google Scholar]
- Parsons D. F. Recent advances correlating structure and function in mitochondria. Int Rev Exp Pathol. 1965;4:1–54. [PubMed] [Google Scholar]
- ROSEN H. A modified ninhydrin colorimetric analysis for amino acids. Arch Biochem Biophys. 1957 Mar;67(1):10–15. doi: 10.1016/0003-9861(57)90241-2. [DOI] [PubMed] [Google Scholar]
- ROSSI C. S., LEHNINGER A. L. STOICHIOMETRIC RELATIONSHIPS BETWEEN ACCUMULATION OF IONS BY MITOCHONDRIA AND THE ENERGY-COUPLING SITES IN THE RESPIRATORY CHAIN. Biochem Z. 1963;338:698–713. [PubMed] [Google Scholar]
- ROSSI C. S., LEHNINGER A. L. STOICHIOMETRY OF RESPIRATORY STIMULATION, ACCUMULATION OF CA++ AND PHOSPHATE, AND OXIDATIVE PHOSPHORYLATION IN RAT LIVER MITOCHONDRIA. J Biol Chem. 1964 Nov;239:3971–3980. [PubMed] [Google Scholar]
- Reynafarje B., Lehninger A. L. High affinity and low affinity binding of Ca++ by rat liver mitochondria. J Biol Chem. 1969 Feb 25;244(4):584–593. [PubMed] [Google Scholar]
- Schnaitman C., Erwin V. G., Greenawalt J. W. The submitochondrial localization of monoamine oxidase. An enzymatic marker for the outer membrane of rat liver mitochondria. J Cell Biol. 1967 Mar;32(3):719–735. doi: 10.1083/jcb.32.3.719. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thomas R. S., Greenawalt J. W. Microincineration, electron microscopy, and electron diffraction of calcium phosphate-loaded mitochondria. J Cell Biol. 1968 Oct;39(1):55–76. doi: 10.1083/jcb.39.1.55. [DOI] [PMC free article] [PubMed] [Google Scholar]
- VASINGTON F. D., MURPHY J. V. Ca ion uptake by rat kidney mitochondria and its dependence on respiration and phosphorylation. J Biol Chem. 1962 Aug;237:2670–2677. [PubMed] [Google Scholar]