Abstract
Mitochondria from the muscle of the parasitic nematode Ascaris lumbricoides var. suum function anaerobically in electron transport-associated phosphorylations under physiological conditions. These helminth organelles have been fractionated into inner and outer membrane, matrix, and intermembrane space fractions. The distributions of enzyme systems were determined and compared with corresponding distributions reported in mammalian mitochondria. Succinate and pyruvate dehydrogenases as well as NADH oxidase, Mg++-dependent ATPase, adenylate kinase, citrate synthase, and cytochrome c reductases were determined to be distributed as in mammalian mitochondria. In contrast with the mammalian systems, fumarase and NAD-linked "malic" enzyme were isolated primarily from the intermembrane space fraction of the worm mitochondria. These enzymes are required for the anaerobic energy-generating system in Ascaris and would be expected to give rise to NADH in the intermembrane space. The need for and possible mechanism of a proton translocation system to obtain energy generation is suggested.
Full Text
The Full Text of this article is available as a PDF (1.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BENNETT H. S., LUFT J. H. zeta-Collidine as a basis for buffering fixatives. J Biophys Biochem Cytol. 1959 Aug;6(1):113–114. doi: 10.1083/jcb.6.1.113. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brdiczka D., Pette D., Brunner G., Miller F. Kompartimentierte Verteilung von Enzymen in Rattenlebermitochondrien. Eur J Biochem. 1968 Jul;5(2):294–304. doi: 10.1111/j.1432-1033.1968.tb00370.x. [DOI] [PubMed] [Google Scholar]
- Bueding E., Saz H. J. Pyruvate kinase and phosphoenolpyruvate carboxykinase activities of Ascaris muscle, Hymenolepis diminuta and Schistosoma mansoni. Comp Biochem Physiol. 1968 Feb;24(2):511–518. doi: 10.1016/0010-406x(68)91003-7. [DOI] [PubMed] [Google Scholar]
- Cascarano J., Chick W. L., Seidman I. Anaerobic rat heart: effect of glucose and Krebs cycle metabolites on rate of beating. Proc Soc Exp Biol Med. 1968 Jan;127(1):25–30. doi: 10.3181/00379727-127-32612. [DOI] [PubMed] [Google Scholar]
- Harris E. J., van Dam K., Pressman B. C. Dependence of uptake of succinate by mitochondria on energy and its relation to potassium retention. Nature. 1967 Mar 18;213(5081):1126–1127. doi: 10.1038/2131126a0. [DOI] [PubMed] [Google Scholar]
- Hochachka P. W., Mustafa T. Invertebrate facultative anaerobiosis. Science. 1972 Dec 8;178(4065):1056–1060. doi: 10.1126/science.178.4065.1056. [DOI] [PubMed] [Google Scholar]
- KMETEC E., BUEDING E. Succinic and reduced diphosphopyridine nucleotide oxidase systems of Ascaris muscle. J Biol Chem. 1961 Feb;236:584–591. [PubMed] [Google Scholar]
- LEHNINGER A. L. Phosphorylation coupled to oxidation of dihydrodiphosphopyridine nucleotide. J Biol Chem. 1951 May;190(1):345–359. [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Laser H. The oxidative metabolism of Ascaris suis. Biochem J. 1944;38(4):333–338. doi: 10.1042/bj0380333. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lévy M., Toury R., André J. Séparation des membranes mitochondriales. Purification et caractérisation enzymatique de la membrane externe. Biochim Biophys Acta. 1967 Sep 9;135(4):599–613. doi: 10.1016/0005-2736(67)90092-2. [DOI] [PubMed] [Google Scholar]
- Moyle J., Mitchell P. The proton-translocating nicotinamide-adenine dinucleotide (phosphate) transhydrogenase of rat liver mitochondria. Biochem J. 1973 Mar;132(3):571–585. doi: 10.1042/bj1320571. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Papa S., Cheah K. S., Rasmussen H. N., Lee I. Y., Chance B. Mechanism of malate utilization in Ascaris-muscle mitochondria. Eur J Biochem. 1970 Feb;12(3):540–543. doi: 10.1111/j.1432-1033.1970.tb00884.x. [DOI] [PubMed] [Google Scholar]
- Penney D. G. Effects of prolonged diving anoxia on the turtle, Pseudemys scripta elegans. Comp Biochem Physiol A Comp Physiol. 1974 Mar 1;47(3):933–941. doi: 10.1016/0300-9629(74)90468-x. [DOI] [PubMed] [Google Scholar]
- Quagliariello E., Palmieri F. Control of succinate oxidation by succinate-uptake by rat-liver mitochondria. Eur J Biochem. 1968 Mar;4(1):20–27. doi: 10.1111/j.1432-1033.1968.tb00167.x. [DOI] [PubMed] [Google Scholar]
- RACKER E. Spectrophotometric measurements of the enzymatic formation of fumaric and cis-aconitic acids. Biochim Biophys Acta. 1950 Jan;4(1-3):211–214. doi: 10.1016/0006-3002(50)90026-6. [DOI] [PubMed] [Google Scholar]
- REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Racker E., Horstman L. L. Partial resolution of the enzymes catalyzing oxidative phosphorylation. 13. Structure and function of submitochondrial particles completely resolved with respect to coupling factor. J Biol Chem. 1967 May 25;242(10):2547–2551. [PubMed] [Google Scholar]
- SAZ H. J., HUBBARD J. A. The oxidative decarboxylation of malate by Ascaris lumbricoides. J Biol Chem. 1957 Apr;225(2):921–933. [PubMed] [Google Scholar]
- SEIDMAN I., ENTNER N. Oxidative enzymes and their role in phosphorylation in sarcosomes of adult Ascaris lumbricoides. J Biol Chem. 1961 Mar;236:915–919. [PubMed] [Google Scholar]
- Saz H. J. Anaerobic phosphorylation in Ascaris mitochondria and the effects of anthelmintics. Comp Biochem Physiol B. 1971 Jul 15;39(3):627–637. doi: 10.1016/0305-0491(71)90207-0. [DOI] [PubMed] [Google Scholar]
- Saz H. J., Berta J., Kowalski J. Transhydrogenase and anaerobic phosphorylation in Hymenolepis diminuta mitochondria. Comp Biochem Physiol B. 1972 Nov 15;43(3):725–732. doi: 10.1016/0305-0491(72)90157-5. [DOI] [PubMed] [Google Scholar]
- Saz H. J., Lescure O. L. The functions of phosphoenolpyruvate carboxykinase and malic enzyme in the anaerobic formation of succinate by Ascaris lumbricoides. Comp Biochem Physiol. 1969 Jul 1;30(1):49–60. doi: 10.1016/0010-406x(69)91296-1. [DOI] [PubMed] [Google Scholar]
- Scheibel L. W., Saz H. J. The pathway for anaerobic carbohydrate dissimilation in Hymenolepis diminuta. Comp Biochem Physiol. 1966 May;18(1):151–162. doi: 10.1016/0010-406x(66)90339-2. [DOI] [PubMed] [Google Scholar]
- Schnaitman C., Erwin V. G., Greenawalt J. W. The submitochondrial localization of monoamine oxidase. An enzymatic marker for the outer membrane of rat liver mitochondria. J Cell Biol. 1967 Mar;32(3):719–735. doi: 10.1083/jcb.32.3.719. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schnaitman C., Greenawalt J. W. Enzymatic properties of the inner and outer membranes of rat liver mitochondria. J Cell Biol. 1968 Jul;38(1):158–175. doi: 10.1083/jcb.38.1.158. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Seligman A. M., Karnovsky M. J., Wasserkrug H. L., Hanker J. S. Nondroplet ultrastructural demonstration of cytochrome oxidase activity with a polymerizing osmiophilic reagent, diaminobenzidine (DAB). J Cell Biol. 1968 Jul;38(1):1–14. doi: 10.1083/jcb.38.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sottocasa G. L., Kuylenstierna B., Ernster L., Bergstrand A. An electron-transport system associated with the outer membrane of liver mitochondria. A biochemical and morphological study. J Cell Biol. 1967 Feb;32(2):415–438. doi: 10.1083/jcb.32.2.415. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spurr A. R. A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res. 1969 Jan;26(1):31–43. doi: 10.1016/s0022-5320(69)90033-1. [DOI] [PubMed] [Google Scholar]
- Wilson M. A., Cascarano J. The energy-yielding oxidation of NADH by fumarate in submitochondrial particles of rat tissues. Biochim Biophys Acta. 1970 Aug 4;216(1):54–62. doi: 10.1016/0005-2728(70)90158-1. [DOI] [PubMed] [Google Scholar]