Abstract
The presence of biogenic amines in cultured cells of mouse neuroblastoma C-1300 (clone NB-2a) was suggested by fluorescence-microscope histochemistry. Incubation in media containing L-[14C]tyrosine and L-[14C]tryptophan for 24 h, followed by high-voltage electrophoresis, radiochromatogram scanning, and scintillation counting, confirmed the presence of [14C]dopamine, [14C]norepinephrine, [14C]epinephrine, [14C]serotonin, [14C]tyramine, and [14C]octopamine. Dopamine, norepinephrine, epinephrine, and serotonin were demonstrated spectrophotofluorometrically in concentrations, expressed as micrograms amine per milligram protein, of 1.19, 0.027, 0.038, and 0.148, respectively, for cells in a stationary growth phase. Fluorescence-microscope histochemistry also suggested the presence of biogenic amines in cultured astrocytoma cells (cell line C6). Spectrophotofluorometric assay of cells in a stationary growth phase demonstrated intracellular dopamine, norepinephrine, epinephrine, and serotonin in concentrations significantly lower than those of neuroblastoma cells.
Full Text
The Full Text of this article is available as a PDF (566.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anagnoste B., Freedman L. S., Goldstein M., Broome J., Fuxe K. Dopamine- -hydroxylase activity in mouse neuroblastoma tumors and in cell cultures. Proc Natl Acad Sci U S A. 1972 Jul;69(7):1883–1886. doi: 10.1073/pnas.69.7.1883. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Augusti-Tocco G., Sato G. Establishment of functional clonal lines of neurons from mouse neuroblastoma. Proc Natl Acad Sci U S A. 1969 Sep;64(1):311–315. doi: 10.1073/pnas.64.1.311. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BIRKENHAEGER J. C. METASTASIZING NEUROBLASTOMA WITH EXCRETION OF 5-HYDROXYINDOLEACETIC ACID, SEROTONIN AND 5-HYDROXYTRYPTOPHAN. Acta Med Scand. 1963 Nov;174:621–626. [PubMed] [Google Scholar]
- Benda P., Lightbody J., Sato G., Levine L., Sweet W. Differentiated rat glial cell strain in tissue culture. Science. 1968 Jul 26;161(3839):370–371. doi: 10.1126/science.161.3839.370. [DOI] [PubMed] [Google Scholar]
- Benda P., Someda K., Messer J., Sweet W. H. Morphological and immunochemical studies of rat glial tumors and clonal strains propagated in culture. J Neurosurg. 1971 Mar;34(3):310–323. doi: 10.3171/jns.1971.34.3.0310. [DOI] [PubMed] [Google Scholar]
- Bondareff W., Narotzky R. Uptake of exogenous norepinephrine from corpus callosum by neurons of the cingulate cortex. Exp Neurol. 1972 Feb;34(2):309–315. doi: 10.1016/0014-4886(72)90176-8. [DOI] [PubMed] [Google Scholar]
- Bondareff W., Routtenberg A., Narotzky R., McLone D. G. Intrastriatal spreading of biogenic amines. Exp Neurol. 1970 Aug;28(2):213–229. doi: 10.1016/0014-4886(70)90231-1. [DOI] [PubMed] [Google Scholar]
- CHANG C. C. A SENSITIVE METHOD FOR SPECTROPHOTOFLUOROMETRIC ASSAY OF CATECHOLAMINES. Int J Neuropharmacol. 1964 Dec;3:643–649. doi: 10.1016/0028-3908(64)90089-9. [DOI] [PubMed] [Google Scholar]
- Clark R. B., Perkins J. P. Regulation of adenosine 3':5'-cyclic monophosphate concentration in cultured human astrocytoma cells by catecholamines and histamine. Proc Natl Acad Sci U S A. 1971 Nov;68(11):2757–2760. doi: 10.1073/pnas.68.11.2757. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DeLellis R. A., Rabson A. S., Albert D. The cytochemical distrubition of catecholamin es in the C1300 murine neuroblastoma. J Histochem Cytochem. 1970 Dec;18(12):913–914. doi: 10.1177/18.12.913. [DOI] [PubMed] [Google Scholar]
- Harris A. J., Dennis M. J. Acetylcholine sensitivity and distribution on mouse neuroblastoma cells. Science. 1970 Feb 27;167(3922):1253–1255. doi: 10.1126/science.167.3922.1253. [DOI] [PubMed] [Google Scholar]
- Henn F. A., Hamberger A. Glial cell function: uptake of transmitter substances. Proc Natl Acad Sci U S A. 1971 Nov;68(11):2686–2690. doi: 10.1073/pnas.68.11.2686. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Käser H. Catecholamine-producing neural tumors other than pheochromocytoma. Pharmacol Rev. 1966 Mar;18(1):659–665. [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Maickel R. P., Cox R. H., Jr, Saillant J., Miller F. P. A method for the determination of serotonin and norepinephrine in discrete areas of rat brain. Int J Neuropharmacol. 1968 May;7(3):275–281. doi: 10.1016/0028-3908(68)90034-8. [DOI] [PubMed] [Google Scholar]
- Nelson P., Ruffner W., Nirenberg M. Neuronal tumor cells with excitable membranes grown in vitro. Proc Natl Acad Sci U S A. 1969 Nov;64(3):1004–1010. doi: 10.1073/pnas.64.3.1004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SCHNEIDER F. H., GILLIS C. N. CATECHOLAMINE BIOSYNTHESIS IN VIVO: AN APPLICATION OF THIN-LAYER CHROMATOGRAPHY. Biochem Pharmacol. 1965 Apr;14:623–626. doi: 10.1016/0006-2952(65)90235-2. [DOI] [PubMed] [Google Scholar]
- Schubert D., Humphreys S., Baroni C., Cohn M. In vitro differentiation of a mouse neuroblastoma. Proc Natl Acad Sci U S A. 1969 Sep;64(1):316–323. doi: 10.1073/pnas.64.1.316. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Silberstein S. D., Shein H. M., Berv K. R. Catechol-O-methyl transferase and monoamine oxidase activity in cultured rodent astrocytoma cells. Brain Res. 1972 Jun 8;41(1):245–248. doi: 10.1016/0006-8993(72)90638-5. [DOI] [PubMed] [Google Scholar]
- Weichert R. F., 3rd The neural ectodermal origin of the peptide-secreting endocrine glands. A unifying concept for the etiology of multiple endocrine adenomatosis and the inappropriate secretion of peptide hormones by nonendocrine tumors. Am J Med. 1970 Aug;49(2):232–241. doi: 10.1016/s0002-9343(70)80079-1. [DOI] [PubMed] [Google Scholar]