Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1974 Oct 1;63(1):180–196. doi: 10.1083/jcb.63.1.180

FREEZE-FRACTURING OF NERVE GROWTH CONES AND YOUNG FIBERS

A Study of Developing Plasma Membrane

Karl H Pfenninger 1, Richard P Bunge 1
PMCID: PMC2109342  PMID: 4609396

Abstract

Neural and non-neural cellular processes have been studied in organotypic cultures of spinal cord and olfactory bulb by means of the freeze-fracturing technique. Identification of specific cellular elements in replicas has been achieved by comparison with thin-sectioned material in which differences in shape and contents are evident. Freeze-fracturing reveals that neural growth cones may be distinguished from glial pseudopodia by the low number of intramembranous particles within their plasma membrane; the counts of particles within the growth cone membrane average 85/µm2 (for the inner leaflet) as opposed to hundreds per square micrometer in glial pseudopodia. Whereas the intramembranous particle number in glial pseudopodia is only slightly lower than in their perikaryal plasmalemma, the number of particles in outgrowing axons increases about eightfold from the periphery towards the perikaryon. Furthermore, with prolonged time of growth in culture, the particle density in the young nerve fibers increases by about the same factor. The same phenomenon, i.e. a low intramembranous particle level at earlier stages and an increase in numbers as the nerve fiber matures, is observed in fetal nerve tissue in vivo. These findings suggest that the plasmalemma of the outgrowing nerve, and especially of the growth cone, is immature and that maturation is accompanied by the insertion of intramembranous particles. Furthermore, these data indicate that the chemistry of the growth cone membrane is distinct from that of the neuron soma which may be significant for the mechanisms of guidance and recognition in the growing nerve tip.

Full Text

The Full Text of this article is available as a PDF (2.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Branton D. Fracture faces of frozen membranes. Proc Natl Acad Sci U S A. 1966 May;55(5):1048–1056. doi: 10.1073/pnas.55.5.1048. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Branton D. Fracture faces of frozen myelin. Exp Cell Res. 1967 Mar;45(3):703–707. doi: 10.1016/0014-4827(67)90175-9. [DOI] [PubMed] [Google Scholar]
  3. Bray D. Branching patterns of individual sympathetic neurons in culture. J Cell Biol. 1973 Mar;56(3):702–712. doi: 10.1083/jcb.56.3.702. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bray D. Surface movements during the growth of single explanted neurons. Proc Natl Acad Sci U S A. 1970 Apr;65(4):905–910. doi: 10.1073/pnas.65.4.905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bretscher M. S. Membrane structure: some general principles. Science. 1973 Aug 17;181(4100):622–629. doi: 10.1126/science.181.4100.622. [DOI] [PubMed] [Google Scholar]
  6. Brunngraber E. G., Dekirmenjian H., Brown B. D. The distribution of protein-bound N-acetylneuraminic acid in subcellular fractions of rat brain. Biochem J. 1967 Apr;103(1):73–78. doi: 10.1042/bj1030073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bunge M. B. Fine structure of nerve fibers and growth cones of isolated sympathetic neurons in culture. J Cell Biol. 1973 Mar;56(3):713–735. doi: 10.1083/jcb.56.3.713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bunge R. P., Wood P. Studies on the transplantation of spinal cord tissue in the rat. I. The development of a culture system for hemisections of embryonic spinal cord. Brain Res. 1973 Jul 27;57(2):261–276. doi: 10.1016/0006-8993(73)90135-2. [DOI] [PubMed] [Google Scholar]
  9. Crain S. M. Development of "organotypic" bioelectric activities in central nervous tissues during maturation in culture. Int Rev Neurobiol. 1966;9:1–43. doi: 10.1016/s0074-7742(08)60135-x. [DOI] [PubMed] [Google Scholar]
  10. Goodenough D. A., Revel J. P. A fine structural analysis of intercellular junctions in the mouse liver. J Cell Biol. 1970 May;45(2):272–290. doi: 10.1083/jcb.45.2.272. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Goodenough U. W., Staehelin L. A. Structural differentiation of stacked and unstacked chloroplast membranes. Freeze-etch electron microscopy of wild-type and mutant strains of Chlamydomonas. J Cell Biol. 1971 Mar;48(3):594–619. doi: 10.1083/jcb.48.3.594. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Grainger F., James D. W. Association of glial cells with the terminal parts of neurite bundles extending from chick spinal cord in vitro. Z Zellforsch Mikrosk Anat. 1970;108(1):93–104. doi: 10.1007/BF00335945. [DOI] [PubMed] [Google Scholar]
  13. HUGHES A. The growth of embryonic neurites; a study of cultures of chick neural tissues. J Anat. 1953 Apr;87(2):150–162. [PMC free article] [PubMed] [Google Scholar]
  14. Hall M. O., Bok D., Bacharach A. D. Biosynthesis and assembly of the rod outer segment membrane system. Formation and fate of visual pigment in the frog retina. J Mol Biol. 1969 Oct 28;45(2):397–406. doi: 10.1016/0022-2836(69)90114-4. [DOI] [PubMed] [Google Scholar]
  15. James D. W., Tresman R. L. The surface coats of chick dorsal root ganglion cells in vitro. J Neurocytol. 1972 Dec;1(4):383–395. doi: 10.1007/BF01102941. [DOI] [PubMed] [Google Scholar]
  16. Karnovsky M. J. The ultrastructural basis of capillary permeability studied with peroxidase as a tracer. J Cell Biol. 1967 Oct;35(1):213–236. doi: 10.1083/jcb.35.1.213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lis H., Sharon N. The biochemistry of plant lectins (phytohemagglutinins). Annu Rev Biochem. 1973;42(0):541–574. doi: 10.1146/annurev.bi.42.070173.002545. [DOI] [PubMed] [Google Scholar]
  18. MOLLENHAUER H. H. PLASTIC EMBEDDING MIXTURES FOR USE IN ELECTRON MICROSCOPY. Stain Technol. 1964 Mar;39:111–114. [PubMed] [Google Scholar]
  19. McNutt N. S., Weinstein R. S. The ultrastructure of the nexus. A correlated thin-section and freeze-cleave study. J Cell Biol. 1970 Dec;47(3):666–688. doi: 10.1083/jcb.47.3.666. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Olson M. I., Bunge R. P. Anatomical observations on the specificity of synapse formation in tissue culture. Brain Res. 1973 Sep 14;59:19–33. doi: 10.1016/0006-8993(73)90251-5. [DOI] [PubMed] [Google Scholar]
  21. Pfenninger K., Akert K., Moor H., Sandri C. The fine structure of freeze-fractured presynaptic membranes. J Neurocytol. 1972 Sep;1(2):129–149. doi: 10.1007/BF01099180. [DOI] [PubMed] [Google Scholar]
  22. Pinto da Silva P., Branton D. Membrane splitting in freeze-ethching. Covalently bound ferritin as a membrane marker. J Cell Biol. 1970 Jun;45(3):598–605. doi: 10.1083/jcb.45.3.598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Pinto da Silva P., Douglas S. D., Branton D. Localization of A antigen sites on human erythrocyte ghosts. Nature. 1971 Jul 16;232(5307):194–196. doi: 10.1038/232194a0. [DOI] [PubMed] [Google Scholar]
  24. REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Scott R. E., Carter R. L., Kidwell W. R. Structural changes in memebranes of synchronized cells demonstrated by freeze-cleavage. Nature. 1971 Oct 13;233(5320):219–220. [PubMed] [Google Scholar]
  26. Shimada Y., Fischman D. A. Morphological and physiological evidence for the development of functional neuromuscular junctions in vitro. Dev Biol. 1973 Mar;31(1):200–225. doi: 10.1016/0012-1606(73)90332-1. [DOI] [PubMed] [Google Scholar]
  27. Singer S. J., Nicolson G. L. The fluid mosaic model of the structure of cell membranes. Science. 1972 Feb 18;175(4023):720–731. doi: 10.1126/science.175.4023.720. [DOI] [PubMed] [Google Scholar]
  28. Singer S. J., Rothfield L. I. Synthesis and turnover of cell membranes. Neurosci Res Program Bull. 1973 Jan;11(1):1–86. [PubMed] [Google Scholar]
  29. Skoff R. P., Hamburger V. Fine structure of dendritic and axonal growth cones in embryonic chick spinal cord. J Comp Neurol. 1974 Jan 15;153(2):107–147. doi: 10.1002/cne.901530202. [DOI] [PubMed] [Google Scholar]
  30. Tillack T. W., Marchesi V. T. Demonstration of the outer surface of freeze-etched red blood cell membranes. J Cell Biol. 1970 Jun;45(3):649–653. doi: 10.1083/jcb.45.3.649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Tillack T. W., Scott R. E., Marchesi V. T. The structure of erythrocyte membranes studied by freeze-etching. II. Localization of receptors for phytohemagglutinin and influenza virus to the intramembranous particles. J Exp Med. 1972 Jun 1;135(6):1209–1227. doi: 10.1084/jem.135.6.1209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Vaughn J. E., Peters A. Electron microscopy of the early postnatal development of fibrous astrocytes. Am J Anat. 1967 Jul;121(1):131–152. doi: 10.1002/aja.1001210109. [DOI] [PubMed] [Google Scholar]
  33. Wehrli E., Mühlethaler K., Moor H. Membrane structure as seen with a double replica method for freeze fracturing. Exp Cell Res. 1970 Feb;59(2):336–339. doi: 10.1016/0014-4827(70)90609-9. [DOI] [PubMed] [Google Scholar]
  34. Wrigglesworth J. M., Packer L., Branton D. Organization of mitochondrial structure as revealed by freeze-etching. Biochim Biophys Acta. 1970;205(2):125–135. doi: 10.1016/0005-2728(70)90243-4. [DOI] [PubMed] [Google Scholar]
  35. Yamada K. M., Spooner B. S., Wessells N. K. Ultrastructure and function of growth cones and axons of cultured nerve cells. J Cell Biol. 1971 Jun;49(3):614–635. doi: 10.1083/jcb.49.3.614. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES