Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1974 Dec 1;63(3):904–922. doi: 10.1083/jcb.63.3.904

FOOD VACUOLE MEMBRANE GROWTH WITH MICROTUBULE-ASSOCIATED MEMBRANE TRANSPORT IN PARAMECIUM

Richard D Allen 1
PMCID: PMC2109358  PMID: 4373478

Abstract

Evidence from a morphological study of the oral apparatus of Paramecium caudatum using electron microscope techniques have shown the existence of an elaborate structural system which is apparently designed to recycle digestive-vacuole membrane. Disk-shaped vesicles are filtered out of the cytoplasm by a group of microtubular ribbons. The vesicles, after being transported to the cytostome-cytopharynx region in association with these ribbons, accumulate next to the cytopharynx before they become fused with the cytopharyngeal membrane. This fusion allows the nascent food vacuole to grow and increase its membrane surface area. The morphology of this cytostome-cytopharynx region is described in detail and illustrated with a three-dimensional drawing of a portion of this region and a clay sculpture of the oral apparatus of Paramecium. Evidence from the literature for the transformation of food vacuole membrane into disk-shaped vesicles both from condensing food vacuoles in the endoplasm and from egested food vacuoles at the cytoproct is presented. This transformation would complete a system of digestive vacuole membrane recycling.

Full Text

The Full Text of this article is available as a PDF (2.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen R. D. Contractility and its control in peritrich ciliates. J Protozool. 1973 Feb;20(1):25–36. doi: 10.1111/j.1550-7408.1973.tb05996.x. [DOI] [PubMed] [Google Scholar]
  2. Allen R. D. Structures linking the myonemes, endoplasmic reticulum, and surface membranes in the contractile ciliate Vorticella. J Cell Biol. 1973 Feb;56(2):559–579. doi: 10.1083/jcb.56.2.559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Allen R. D., Wolf R. W. The cytoproct of Paramecium caudatum: structure and function, microtubules, and fate of food vacuole membranes. J Cell Sci. 1974 May;14(3):611–631. doi: 10.1242/jcs.14.3.611. [DOI] [PubMed] [Google Scholar]
  4. Bardele C. F. A microtubule model for ingestion and transport in the suctorian tentacle. Z Zellforsch Mikrosk Anat. 1972;126(1):116–134. doi: 10.1007/BF00306784. [DOI] [PubMed] [Google Scholar]
  5. Branton D. Fracture faces of frozen membranes. Proc Natl Acad Sci U S A. 1966 May;55(5):1048–1056. doi: 10.1073/pnas.55.5.1048. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dembitzer H. M. Digestion and the distribution of acid phosphatase in Blepharisma. J Cell Biol. 1968 May;37(2):329–344. doi: 10.1083/jcb.37.2.329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. EHRET C. F., POWERS E. L. The cell surface of Paramecium. Int Rev Cytol. 1959;8:97–133. doi: 10.1016/s0074-7696(08)62729-1. [DOI] [PubMed] [Google Scholar]
  8. Esteve J. C. Distribution of acid phosphatase in Paramecium caudatum: its relations with the process of digestion. J Protozool. 1970 Feb;17(1):24–35. doi: 10.1111/j.1550-7408.1970.tb05155.x. [DOI] [PubMed] [Google Scholar]
  9. Franke W. W. Cytoplasmic microtubules linked to endoplasmic reticulum with cross-bridges. Exp Cell Res. 1971 Jun;66(2):486–489. doi: 10.1016/0014-4827(71)90705-1. [DOI] [PubMed] [Google Scholar]
  10. GIBBONS I. R., GRIMSTONE A. V. On flagellar structure in certain flagellates. J Biophys Biochem Cytol. 1960 Jul;7:697–716. doi: 10.1083/jcb.7.4.697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hicks R. M. The fine structure of the transitional epithelium of rat ureter. J Cell Biol. 1965 Jul;26(1):25–48. doi: 10.1083/jcb.26.1.25. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hopkins J. M. Subsidiary components of the flagella of Chlamydomonas reinhardii. J Cell Sci. 1970 Nov;7(3):823–839. doi: 10.1242/jcs.7.3.823. [DOI] [PubMed] [Google Scholar]
  13. Hufnagel L. A. Cortical ultrastructure of Paramecium aurelia. Studies on isolated pellicles. J Cell Biol. 1969 Mar;40(3):779–801. doi: 10.1083/jcb.40.3.779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Koss L. G. The asymmetric unit membranes of the epithelium of the urinary bladder of the rat. An electron microscopic study of a mechanism of epithelial maturation and function. Lab Invest. 1969 Aug;21(2):154–168. [PubMed] [Google Scholar]
  15. McKanna J. A. Cyclic membrane flow in the ingestive-digestive system of peritrich protozoans. I. Vesicular fusion at the cytopharynx. J Cell Sci. 1973 Nov;13(3):663–675. doi: 10.1242/jcs.13.3.663. [DOI] [PubMed] [Google Scholar]
  16. McKanna J. A. Cyclic membrane flow in the ingestive-digestive system of peritrich protozoans. II. Cup-shaped coated vesicles. J Cell Sci. 1973 Nov;13(3):677–686. doi: 10.1242/jcs.13.3.677. [DOI] [PubMed] [Google Scholar]
  17. Pinto da Silva P., Branton D. Membrane splitting in freeze-ethching. Covalently bound ferritin as a membrane marker. J Cell Biol. 1970 Jun;45(3):598–605. doi: 10.1083/jcb.45.3.598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Pinto da Silva P. Translational mobility of the membrane intercalated particles of human erythrocyte ghosts. pH-dependent, reversible aggregation. J Cell Biol. 1972 Jun;53(3):777–787. doi: 10.1083/jcb.53.3.777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Porter K. R., Kenyon K., Badenhausen S. Specializations of the unit membrane. Protoplasma. 1967;63(1):262–274. [PubMed] [Google Scholar]
  20. SCHNEIDER L. ELEKTRONENMIKROSKOPISCHE UNTERSUCHUNGEN AN DEN ERNAEHRUNGSORGANELLEN VON PARAMECIUM II. DIE NAHRUNGSVAKUOLEN UND DIE CYTOPYGE. Z Zellforsch Mikrosk Anat. 1964 Mar 5;62:225–245. [PubMed] [Google Scholar]
  21. SCHNEIDER L. ELEKTRONENMIKROSKOPISCHE UNTERSUCHUNGEN AN DEN ERNAEHRUNGSORGANELLEN VON PARAMECIUM. I. DER CYTOPHARYNX. Z Zellforsch Mikrosk Anat. 1964 Mar 5;62:198–224. [PubMed] [Google Scholar]
  22. Singer S. J., Nicolson G. L. The fluid mosaic model of the structure of cell membranes. Science. 1972 Feb 18;175(4023):720–731. doi: 10.1126/science.175.4023.720. [DOI] [PubMed] [Google Scholar]
  23. Staehelin L. A., Chlapowski F. J., Bonneville M. A. Lumenal plasma membrane of the urinary bladder. I. Three-dimensional reconstruction from freeze-etch images. J Cell Biol. 1972 Apr;53(1):73–91. doi: 10.1083/jcb.53.1.73. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Tucker J. B. Microtubule-arms and propulsion of food particles inside a large feeding organelle in the ciliate Phascolodon vorticella. J Cell Sci. 1972 May;10(3):883–903. doi: 10.1242/jcs.10.3.883. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES