Abstract
Numerous small and medium-sized neuronal perikarya in layers III and IV of the visual cortex display an unusual pattern of ribosomal distribution. Instead of being aggregated in clusters, spirals, rows, and other regular polysomal configurations, the ribosomes, whether free or attached to the endoplasmic reticulum, are randomly dispersed, with no discernible pattern. The endoplasmic reticulum in such cells is reduced to a few (perhaps only one) meandering, broad cisternae, which delimit broad fields of cytoplasmic matrix occupied almost solely by scattered, single ribosomes. The Golgi apparatus is elaborate. Mitochondria are either small and numerous or large and infrequent. The other organelles, including the nucleus and nucleolus, are not remarkable. Axonal terminals synapse in the normal fashion on the surfaces of these cells and their dendrites. Associated with these cells are more numerous intermediate cells in which a few to many polysomal clusters can be found. It is proposed that the neurons with dispersed, single ribosomes are inactive in protein synthesis and that the suspension of such an important metabolic activity is probably temporary. Thus, these cells are considered to be part of a population undergoing cyclic fluctuations in the intensity of protein synthesis that should be correlated with their specific neural behavior.
Full Text
The Full Text of this article is available as a PDF (2.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adamson S. D., Howard G. A., Herbert E. The ribosome cycle in a reconstituted cell-free system from reticulocytes. Cold Spring Harb Symp Quant Biol. 1969;34:547–554. doi: 10.1101/sqb.1969.034.01.062. [DOI] [PubMed] [Google Scholar]
- Aoki K., Siegel F. L. Hyperphenylalaninemia: disaggregation of brain polyribosomes in young rats. Science. 1970 Apr 3;168(3927):129–130. doi: 10.1126/science.168.3927.129. [DOI] [PubMed] [Google Scholar]
- BODIAN D. AN ELECTRON-MICROSCOPIC STUDY OF THE MONKEY SPINAL CORD. I. FINE STRUCTURE OF NORMAL MOTOR COLUMN. II. EFFECTS OF RETROGRADE CHROMATOLYSIS. III. CYTOLOGIC EFFECTS OF MILD AND VIRULENT POLIOVIRUS INFECTION. Bull Johns Hopkins Hosp. 1964 Jan;114:13–119. [PubMed] [Google Scholar]
- Becker M. J., Rich A. Polyribosomes of tissues producing antibodies. Nature. 1966 Oct 8;212(5058):142–146. doi: 10.1038/212142a0. [DOI] [PubMed] [Google Scholar]
- DIAMOND M. C., KRECH D., ROSENZWEIG M. R. THE EFFECTS OF AN ENRICHED ENVIRONMENT ON THE HISTOLOGY OF THE RAT CEREBRAL CORTEX. J Comp Neurol. 1964 Aug;123:111–120. doi: 10.1002/cne.901230110. [DOI] [PubMed] [Google Scholar]
- Dellweg H., Gerner R., Wacker A. Quantitative and qualitative changes in ribonucleic acids of rat brain dependent on age and training experiments. J Neurochem. 1968 Oct;15(10):1109–1119. doi: 10.1111/j.1471-4159.1968.tb06828.x. [DOI] [PubMed] [Google Scholar]
- Diamond M. C., Law F., Rhodes H., Lindner B., Rosenzweig M. R., Krech D., Bennett E. L. Increases in cortical depth and glia numbers in rats subjected to enriched environment. J Comp Neurol. 1966 Sep;128(1):117–126. doi: 10.1002/cne.901280110. [DOI] [PubMed] [Google Scholar]
- Diamond M. C., Law F., Rhodes H., Lindner B., Rosenzweig M. R., Krech D., Bennett E. L. Increases in cortical depth and glia numbers in rats subjected to enriched environment. J Comp Neurol. 1966 Sep;128(1):117–126. doi: 10.1002/cne.901280110. [DOI] [PubMed] [Google Scholar]
- Haselkorn R., Rothman-Denes L. B. Protein synthesis. Annu Rev Biochem. 1973;42:397–438. doi: 10.1146/annurev.bi.42.070173.002145. [DOI] [PubMed] [Google Scholar]
- Joklik W. K., Becker Y. Studies on the genesis of polyribosomes. I. Origin and significance of the subribosomal particles. J Mol Biol. 1965 Sep;13(2):496–510. doi: 10.1016/s0022-2836(65)80112-7. [DOI] [PubMed] [Google Scholar]
- Kabat D., Rich A. The ribosomal subunit--polyribosome cycle in protein synthesis of embryonic skeletal muscle. Biochemistry. 1969 Sep;8(9):3742–3749. doi: 10.1021/bi00837a038. [DOI] [PubMed] [Google Scholar]
- Kaempfer R. O., Meselson M., Raskas H. J. Cyclic dissociation into stable subunits and re-formation of ribosomes during bacterial growth. J Mol Biol. 1968 Jan 28;31(2):277–289. doi: 10.1016/0022-2836(68)90444-0. [DOI] [PubMed] [Google Scholar]
- Kaempfer R. Control of single ribosome formation by an initiation factor for protein synthesis. Proc Natl Acad Sci U S A. 1971 Oct;68(10):2458–2462. doi: 10.1073/pnas.68.10.2458. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaempfer R., Meselson M. Studies of ribosomal subunit exchange. Cold Spring Harb Symp Quant Biol. 1969;34:209–220. doi: 10.1101/sqb.1969.034.01.027. [DOI] [PubMed] [Google Scholar]
- MARKS P. A., RIFKIND R. A. DANON D: POLYRIBOSOMES AND PROTEIN SYNTHESIS DURING RETICULOCYTE MATURATION IN VITRO. Proc Natl Acad Sci U S A. 1963 Aug;50:336–342. doi: 10.1073/pnas.50.2.336. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Munro H. N., Roel L., Wurtman R. J. Inhibition of brain protein synthesis by doses of L-DOPA that disaggregate brain polyribosomes. J Neural Transm. 1973;34(4):321–323. doi: 10.1007/BF01242753. [DOI] [PubMed] [Google Scholar]
- Nanninga N. Structural aspects of ribosomes. Int Rev Cytol. 1973;35:135–188. doi: 10.1016/s0074-7696(08)60354-x. [DOI] [PubMed] [Google Scholar]
- O'Connor T. M., Wyttenbach C. R. Cell death in the embryonic chick spinal cord. J Cell Biol. 1974 Feb;60(2):448–459. doi: 10.1083/jcb.60.2.448. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PALAY S. L., PALADE G. E. The fine structure of neurons. J Biophys Biochem Cytol. 1955 Jan;1(1):69–88. doi: 10.1083/jcb.1.1.69. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PALAY S. L., WISSIG S. L. Secretory granules and Nissl substance in fresh supraoptic neurones of the rabbit. Anat Rec. 1953 Jul;116(3):301–313. doi: 10.1002/ar.1091160307. [DOI] [PubMed] [Google Scholar]
- PANNESE E. INVESTIGATIONS ON THE ULTRASTRUCTURAL CHANGES OF THE SPINAL GANGLION NEURONS IN THE COURSE OF AXON REGENERATION AND CELL HYPERTROPHY. I. CHANGES DURING AXON REGENERATION. Z Zellforsch Mikrosk Anat. 1963 Sep 3;60:711–740. doi: 10.1007/BF00343854. [DOI] [PubMed] [Google Scholar]
- Phillips L. A., Franklin R. M. The in vivo distribution of bacterial polysomes, ribosomes, and ribosomal subunits. Cold Spring Harb Symp Quant Biol. 1969;34:243–253. doi: 10.1101/sqb.1969.034.01.030. [DOI] [PubMed] [Google Scholar]
- Price D. L., Porter K. R. The response of ventral horn neurons to axonal transection. J Cell Biol. 1972 Apr;53(1):24–37. doi: 10.1083/jcb.53.1.24. [DOI] [PMC free article] [PubMed] [Google Scholar]
- RICH A., PENMAN S., BECKER Y., DARNELL J., HALL C. POLYRIBOSOMES: SIZE IN NORMAL AND POLIO- INFECTED HELA CELLS. Science. 1963 Dec 27;142(3600):1658–1663. doi: 10.1126/science.142.3600.1658. [DOI] [PubMed] [Google Scholar]
- RICHARDSON K. C., JARETT L., FINKE E. H. Embedding in epoxy resins for ultrathin sectioning in electron microscopy. Stain Technol. 1960 Nov;35:313–323. doi: 10.3109/10520296009114754. [DOI] [PubMed] [Google Scholar]
- Schlessinger D., Gurgo C., Luzzatto L., Apirion D. Polyribosome metabolism in growing and nongrowing Escherichia coli. Cold Spring Harb Symp Quant Biol. 1969;34:231–242. doi: 10.1101/sqb.1969.034.01.029. [DOI] [PubMed] [Google Scholar]
- WARNER J. R., KNOPF P. M., RICH A. A multiple ribosomal structure in protein synthesis. Proc Natl Acad Sci U S A. 1963 Jan 15;49:122–129. doi: 10.1073/pnas.49.1.122. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weiss B. F., Munro H. N., Wurtman R. J. L-dopa: disaggregation of brain polysomes and elevation of brain tryptophan. Science. 1971 Aug 27;173(3999):833–835. doi: 10.1126/science.173.3999.833. [DOI] [PubMed] [Google Scholar]