Abstract
Graded dextrans have been used as tracers to identify the primary permeability barrier(s) to macromolecules among the structural elements (endothelium, mesangium, basement membrane, epithelium) of the glomerular capillary wall. Three narrow-range fractions of specified molecular weights and Einstein-Stokes radii (ESR) were prepared by gel filtration: (a) 32,000 mol wt, ESR = 38 Å; (b) 62,000 mol wt, ESR = 55 Å; and (c) 125,000 mol wt, ESR = 78 Å. These fractions are known to be extensively filtered, filtered in only small amounts, and largely retained, respectively, by the glomerular capillaries. Tracer solutions were infused i.v. into Wistar-Furth rats, and the left kidney was fixed after 5 min to 4 h. The preparations behaved as predicted: initially, all three fractions appeared in the urinary spaces, with 32,000 > 62,000 » 125,000. The smallest fraction was totally cleared from the blood and urinary spaces by 2.5 h, whereas the intermediate and largest fractions were retained in the circulation at high concentrations up to 4 h. With all fractions, when particles occurred in high concentration in the capillary lumina, they were present in similarly high concentrations in the endothelial fenestrae and inner (subendothelial) portions of the basement membrane, but there was a sharp drop in their concentration at this level—i.e., between the inner, looser portions of the basement membrane and its outer, more compact portions. With the two largest fractions, accumulation of particles occurred against the basement membrane in the mesangial regions with time. No accumulation was seen with any of the fractions in the epithelial slits or against the slit membranes. Dextran was also seen in phagosomes in mesangial cells, and in absorption droplets in the glomerular and proximal tubule epithelium. It is concluded that the basement membrane is the main glomerular permeability barrier to dextrans, and (since their behavior is known to be similar) to proteins of comparable dimensions (40,000–200,000 mol wt). The findings are discussed in relation to previous work using electron-opaque tracers to localize the glomerular permeability barrier and in relation to models proposed for the functions of the various glomerular structural elements.
Full Text
The Full Text of this article is available as a PDF (2.7 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arturson G., Groth T., Grotte G. Human glomerular membrane porosity and filtration pressure: dextran clearance data analysed by theoretical models. Clin Sci. 1971 Feb;40(2):137–158. doi: 10.1042/cs0400137. [DOI] [PubMed] [Google Scholar]
- DEODHAR S. D., CUPPAGE F. E., GABLEMAN E. STUDIES ON THE MECHANISM OF EXPERIMENTAL PROTEINURIA INDUCED BY RENIN. J Exp Med. 1964 Oct 1;120:677–690. doi: 10.1084/jem.120.4.677. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ericsson J. L. Fine structural basis of hemoglobin filtration by glomerular capillaries. Nephron. 1968;5(1):7–23. doi: 10.1159/000179613. [DOI] [PubMed] [Google Scholar]
- FARQUHAR M. G., PALADE G. E. Glomerular permeability. II. Ferritin transfer across the glomerular capillary wall in nephrotic rats. J Exp Med. 1961 Nov 1;114:699–716. doi: 10.1084/jem.114.5.699. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FARQUHAR M. G., PALADE G. E. Segregation of ferritin in glomerular protein absorption droplets. J Biophys Biochem Cytol. 1960 Apr;7:297–304. doi: 10.1083/jcb.7.2.297. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FARQUHAR M. G., VERNIER R. L., GOOD R. A. An electron microscope study of the glomerulus in nephrosis, glomerulonephritis, and lupus erythematosus. J Exp Med. 1957 Nov 1;106(5):649–660. doi: 10.1084/jem.106.5.649. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FARQUHAR M. G., WISSIG S. L., PALADE G. E. Glomerular permeability. I. Ferritin transfer across the normal glomerular capillary wall. J Exp Med. 1961 Jan 1;113:47–66. doi: 10.1084/jem.113.1.47. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FARRANT J. L. An electron microscopic study of ferritin. Biochim Biophys Acta. 1954 Apr;13(4):569–576. doi: 10.1016/0006-3002(54)90376-5. [DOI] [PubMed] [Google Scholar]
- Fahimi H. D. Diffusion artifacts in cytochemistry of catalase. J Histochem Cytochem. 1973 Nov;21(11):999–1009. doi: 10.1177/21.11.999. [DOI] [PubMed] [Google Scholar]
- Graham R. C., Jr, Karnovsky M. J. Glomerular permeability. Ultrastructural cytochemical studies using peroxidases as protein tracers. J Exp Med. 1966 Dec 1;124(6):1123–1134. doi: 10.1084/jem.124.6.1123. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Graham R. C., Jr, Kellermeyer R. W. Bovine lactoperoxidase as a cytochemical protein tracer for electron microscopy. J Histochem Cytochem. 1968 Apr;16(4):275–278. doi: 10.1177/16.4.275. [DOI] [PubMed] [Google Scholar]
- Granath K. A., Kvist B. E. Molecular weight distribution analysis by gel chromatography on Sephadex. J Chromatogr. 1967 May;28(1):69–81. doi: 10.1016/s0021-9673(01)85930-6. [DOI] [PubMed] [Google Scholar]
- Hardwicke J., Hulme B., Jones J. H., Ricketts C. R. Measurement of glomerular permeability to polydisperse radioactively-labelled macromolecules in normal rabbits. Clin Sci. 1968 Jun;34(3):505–514. [PubMed] [Google Scholar]
- JAMES J. A., ASHWORTH C. T. Some features of glomerular filtration and permeability revealed by electron microscopy after intraperitoneal injection of dextran in rats. Am J Pathol. 1961 May;38:515–525. [PMC free article] [PubMed] [Google Scholar]
- Karnovsky M. J., Ainsworth S. K. The structural basis of glomerular filtration. Adv Nephrol Necker Hosp. 1972;2:35–60. [PubMed] [Google Scholar]
- LATTA H., MAUNSBACH A. B., MADDEN S. C. The centrolobular region of the renal glomerulus studied by electron microscopy. J Ultrastruct Res. 1960 Dec;4:455–472. doi: 10.1016/s0022-5320(60)80033-0. [DOI] [PubMed] [Google Scholar]
- Latta H. The glomerular cappillary wall. J Ultrastruct Res. 1970 Sep;32(5):526–544. doi: 10.1016/s0022-5320(70)80026-0. [DOI] [PubMed] [Google Scholar]
- Laurent T. C., Granath K. A. Fractionation of dextran and Ficoll by chromatography on Sephadex G-200. Biochim Biophys Acta. 1967 Mar 22;136(2):191–198. doi: 10.1016/0304-4165(67)90063-3. [DOI] [PubMed] [Google Scholar]
- Leduc E. H., Bernhard W. Recent modifications of the glycol methacrylate embedding procedure. J Ultrastruct Res. 1967 Jul;19(1):196–199. doi: 10.1016/s0022-5320(67)80068-6. [DOI] [PubMed] [Google Scholar]
- MENEFEE M. G., MUELLER C. B., BELL A. L., MYERS J. K. TRANSPORT OF GLOBIN BY THE RENAL GLOMERULUS. J Exp Med. 1964 Dec 1;120:1129–1138. doi: 10.1084/jem.120.6.1129. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MILLER F., PALADE G. E. LYTIC ACTIVITIES IN RENAL PROTEIN ABSORPTION DROPLETS. AN ELECTRON MICROSCOPICAL CYTOCHEMICAL STUDY. J Cell Biol. 1964 Dec;23:519–552. doi: 10.1083/jcb.23.3.519. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mauer S. M., Fish A. J., Blau E. B., Michael A. F. The glomerular mesangium. I. Kinetic studies of macromolecular uptake in normal and nephrotic rats. J Clin Invest. 1972 May;51(5):1092–1101. doi: 10.1172/JCI106901. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Michael A. F., Fish A. J., Good R. A. Glomerular localization and transport of aggregated proteins in mice. Lab Invest. 1967 Jul;17(1):14–29. [PubMed] [Google Scholar]
- Michael A. F., Fish A. J., Good R. A. Glomerular localization and transport of aggregated proteins in mice. Lab Invest. 1967 Jul;17(1):14–29. [PubMed] [Google Scholar]
- Mogensen C. E. The glomerular permeability determined by dextran clearance using Sephadex gel filtration. Scand J Clin Lab Invest. 1968;21(1):77–82. doi: 10.3109/00365516809076979. [DOI] [PubMed] [Google Scholar]
- NOGUCHI H. Interactions of proteins with polymeric materials. Biochim Biophys Acta. 1956 Dec;22(3):459–462. doi: 10.1016/0006-3002(56)90055-5. [DOI] [PubMed] [Google Scholar]
- Novikoff A. B., Novikoff P. M., Quintana N., Davis C. Diffusion artificats in 3,3'-diaminobenzidine cytochemistry. J Histochem Cytochem. 1972 Sep;20(9):745–749. doi: 10.1177/20.9.745. [DOI] [PubMed] [Google Scholar]
- Oliver C., Essner E. Protein transport in mouse kidney utilizing tyrosinase as an ultrastructural tracer. J Exp Med. 1972 Aug 1;136(2):291–304. doi: 10.1084/jem.136.2.291. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PAPPENHEIMER J. R. Passage of molecules through capillary wals. Physiol Rev. 1953 Jul;33(3):387–423. doi: 10.1152/physrev.1953.33.3.387. [DOI] [PubMed] [Google Scholar]
- PAPPENHEIMER J. R. Uber die Permeabililität der Glomerulummembranen in der Niere. Klin Wochenschr. 1955 Apr 15;33(15-16):362–365. doi: 10.1007/BF01467967. [DOI] [PubMed] [Google Scholar]
- Pessina A. C., Hulme B., Peart W. S. Renin induced proteinuria and the effects of adrenalectomy. II. Morphology in relation to function. Proc R Soc Lond B Biol Sci. 1972 Jan 18;180(1058):61–71. doi: 10.1098/rspb.1972.0005. [DOI] [PubMed] [Google Scholar]
- REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rodewald R., Karnovsky M. J. Porous substructure of the glomerular slit diaphragm in the rat and mouse. J Cell Biol. 1974 Feb;60(2):423–433. doi: 10.1083/jcb.60.2.423. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Seligman A. M., Shannon W. A., Jr, Hoshino Y., Plapinger R. E. Some important principles in 3,3'-diaminobenzidine ultrastructural cytochemistry. J Histochem Cytochem. 1973 Aug;21(8):756–758. doi: 10.1177/21.8.756. [DOI] [PubMed] [Google Scholar]
- Simionescu N., Palade G. E. Dextrans and glycogens as particulate tracers for studying capillary permeability. J Cell Biol. 1971 Sep;50(3):616–624. doi: 10.1083/jcb.50.3.616. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Simionescu N., Simionescu M., Palade G. E. Permeability of intestinal capillaries. Pathway followed by dextrans and glycogens. J Cell Biol. 1972 May;53(2):365–392. doi: 10.1083/jcb.53.2.365. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Venkatachalam M. A., Karnovsky M. J., Fahimi H. D., Cotran R. S. An ultrastructural study of glomerular permeability using catalase and peroxidase as tracer proteins. J Exp Med. 1970 Dec 1;132(6):1153–1167. doi: 10.1084/jem.132.6.1153. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WALLENIUS G. [Renal clearance of dextran as a measure of glomerular permeability]. Acta Soc Med Ups Suppl. 1954 Apr 8;59(4):1–91. [PubMed] [Google Scholar]