Abstract
Populations of Tetrahymena pyriformis were grown in a chemically defined medium containing the thymidine analogue 5-bromodeoxyuridine (BUdR). About 65% of the thymidine sites in DNA were substituted by BUdR. During the first generation in the presence of BUdR, all DNA became hybrid. After the following cell division, in about 80% of the cells the second DNA replication round was initiated but no further cell division took place. The cells could be rescued by removing BUdR and adding thymidine. New replication took place before the first cell division. However, although the cells contained double heavy as well as hybrid DNA, only the hybrid DNA was replicated. After a full replication of the hybrid DNA, normal growth was restored. Melting profiles of normal, hybrid, and double heavy DNA indicated a structural change of the double heavy DNA.
Full Text
The Full Text of this article is available as a PDF (391.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andersen H. A., Brunk C. F., Zeuthen E. Studies on the DNA replication in heat synchronized Tetrahymena pyriformis. C R Trav Lab Carlsberg. 1970;38(7):123–131. [PubMed] [Google Scholar]
- Andersen H. A. Induced elimination of DNA from macronucleus of Tetrahymena pyriformis. Exp Cell Res. 1972 Oct;74(2):610–613. doi: 10.1016/0014-4827(72)90429-6. [DOI] [PubMed] [Google Scholar]
- Andersen H. A. Requirements for DNA replication preceding cell division in Tetrahymena pyriformis. Exp Cell Res. 1972 Nov;75(1):89–94. doi: 10.1016/0014-4827(72)90523-x. [DOI] [PubMed] [Google Scholar]
- Andersen H. A., Zeuthen E. DNA replication sequence in Tetrahymena is not repeated from generation to generation. Exp Cell Res. 1971 Oct;68(2):309–314. doi: 10.1016/0014-4827(71)90155-8. [DOI] [PubMed] [Google Scholar]
- Braun R., Wili H. Time sequence of DNA replication in Physarum. Biochim Biophys Acta. 1969 Jan 21;174(1):246–252. doi: 10.1016/0005-2787(69)90248-2. [DOI] [PubMed] [Google Scholar]
- Gontcharoff M., Mazia D. Developmental consequences of introduction of bromouracil into the DNA of sea urchin embryos during early division stages. Exp Cell Res. 1967 May;46(2):315–327. doi: 10.1016/0014-4827(67)90069-9. [DOI] [PubMed] [Google Scholar]
- HAKALA M. T. Mode of action of 5-bromodeoxyuridine on mammalian cells in culture. J Biol Chem. 1959 Dec;234:3072–3076. [PubMed] [Google Scholar]
- Kotzin B. L., Baker R. F. Selective inhibition of genetic transcription in sea urchin embryos. Incorporation of 5-bromodeoxyuridine into low molecular weight nuclear DNA. J Cell Biol. 1972 Oct;55(1):74–81. doi: 10.1083/jcb.55.1.74. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LITTLEFIELD J. W., GOULD E. A. The toxic effect of 5-bromodeoxyuridine on cultured epithelial cells. J Biol Chem. 1960 Apr;235:1129–1133. [PubMed] [Google Scholar]
- Marzullo G. Regulation of cartilage enzymes in cultured chondrocytes and the effect of 5-bromodeoxyuridine. Dev Biol. 1972 Jan;27(1):20–26. doi: 10.1016/0012-1606(72)90109-1. [DOI] [PubMed] [Google Scholar]
- Mayne R., Abbott J., Holtzer H. Requirement for cell proliferation for the effects of 5-bromo-2'-deoxyuridine on cultures of chick chondrocytes. Exp Cell Res. 1973 Mar 15;77(1):255–263. doi: 10.1016/0014-4827(73)90575-2. [DOI] [PubMed] [Google Scholar]
- Meselson M., Stahl F. W. THE REPLICATION OF DNA IN ESCHERICHIA COLI. Proc Natl Acad Sci U S A. 1958 Jul 15;44(7):671–682. doi: 10.1073/pnas.44.7.671. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mueller G. C., Kajiwara K. Early- and late-replicating deoxyribonucleic acid complexes in HeLa nuclei. Biochim Biophys Acta. 1966 Jan 18;114(1):108–115. doi: 10.1016/0005-2787(66)90258-9. [DOI] [PubMed] [Google Scholar]
- Rasmussen L., Modeweg-Hansen L. Cell multiplication in Tetrahymena cultures after addition of particulate material. J Cell Sci. 1973 Jan;12(1):275–286. doi: 10.1242/jcs.12.1.275. [DOI] [PubMed] [Google Scholar]
- Smith D. W., Schaller H. E., Bonhoeffer F. J. DNA synthesis in vitro. Nature. 1970 May 23;226(5247):711–713. doi: 10.1038/226711a0. [DOI] [PubMed] [Google Scholar]
- Stellwagen R. H., Tomkins G. M. Differential effect of 5-bromodeoxyuridine on the concentrations of specific enzymes in hepatoma cells in culture. Proc Natl Acad Sci U S A. 1971 Jun;68(6):1147–1150. doi: 10.1073/pnas.68.6.1147. [DOI] [PMC free article] [PubMed] [Google Scholar]
- TRAUTNER T. A., SWARTZ M. N., KORNBERG A. Enzymatic synthesis of deoxyribonucleic acid. X. Influence of bromouracil substitutions on replication. Proc Natl Acad Sci U S A. 1962 Mar 15;48:449–455. doi: 10.1073/pnas.48.3.449. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Toliver A., Simon E. H. DNA synthesis in 5-bromouracil tolerant HeLa cells. An autoradiographic study. Exp Cell Res. 1967 Mar;45(3):603–617. doi: 10.1016/0014-4827(67)90163-2. [DOI] [PubMed] [Google Scholar]
