Abstract
Cells in culture exposed to cytochalasin D (CD) rapidly undergo a long-sustained tonic contraction. Coincident with this contracture the thin microfilaments of the cortex become compacted into feltlike masses. The ravelled filaments of these masses remain actinlike and bind heavy meromyosin; they are not disrupted or disaggregated, but rather, appear to represent a contracted state of the microfilament apparatus of the cell cortex. On continued exposure to CD, ‘myoid’ bundles, containing thick, dense filaments, and larger fusiform or ribbonlike, putatively myosinoid, aggregates may appear. These appearances are interpreted as consequences of a state of hypercontraction without relaxation induced by CD. They do not occur in CD-treated cells prevented from contracting by inhibitors of energy metabolism, and are readily reversible on withdrawal of CD. Extensive ordered arrays of thin microfilaments develop in cells which are reextending during early recovery.
Full Text
The Full Text of this article is available as a PDF (2.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adelstein R. S., Pollard T. D., Kuehl W. M. Isolation and characterization of myosin and two myosin fragments from human blood platelets. Proc Natl Acad Sci U S A. 1971 Nov;68(11):2703–2707. doi: 10.1073/pnas.68.11.2703. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Allison A. C., Davies P., De Petris S. Role of contractile microfilaments in macrophage movement and endocytosis. Nat New Biol. 1971 Aug 4;232(31):153–155. doi: 10.1038/newbio232153a0. [DOI] [PubMed] [Google Scholar]
- Behnke O., Kristensen B. I., Nielsen L. E. Electron microscopical observations on actinoid and myosinoid filaments in blood platelets. J Ultrastruct Res. 1971 Nov;37(3):351–369. doi: 10.1016/s0022-5320(71)80129-6. [DOI] [PubMed] [Google Scholar]
- Berl S., Puszkin S., Nicklas W. J. Actomyosin-like protein in brain. Science. 1973 Feb 2;179(4072):441–446. doi: 10.1126/science.179.4072.441. [DOI] [PubMed] [Google Scholar]
- Bernfield M. R., Wessells N. K. Intra- and extracellular control of epithelial morphogenesis. Symp Soc Dev Biol. 1970;29:195–249. doi: 10.1016/b978-0-12-395534-0.50014-5. [DOI] [PubMed] [Google Scholar]
- Buckley I. K., Porter K. R. Cytoplasmic fibrils in living cultured cells. A light and electron microscope study. Protoplasma. 1967;64(4):349–380. doi: 10.1007/BF01666538. [DOI] [PubMed] [Google Scholar]
- Burton P. R., Kirkland W. L. Actin detected in mouse neuroblastoma cells by binding of heavy meromyosin. Nat New Biol. 1972 Oct 25;239(95):244–246. doi: 10.1038/newbio239244a0. [DOI] [PubMed] [Google Scholar]
- Chang C. M., Goldman R. D. The localization of actin-like fibers in cultured neuroblastoma cells as revealed by heavy meromyosin binding. J Cell Biol. 1973 Jun;57(3):867–874. doi: 10.1083/jcb.57.3.867. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cloney R. A. Cytoplasmic filaments and cell movements: epidermal cells during ascidian metamorphosis. J Ultrastruct Res. 1966 Feb;14(3):300–328. doi: 10.1016/s0022-5320(66)80051-5. [DOI] [PubMed] [Google Scholar]
- Cloney R. A. Cytoplasmic filaments and morphogenesis: effects of cytochalasin B on contractile epidermal cells. Z Zellforsch Mikrosk Anat. 1972;132(2):167–192. doi: 10.1007/BF00307009. [DOI] [PubMed] [Google Scholar]
- Fine R. E., Bray D. Actin in growing nerve cells. Nat New Biol. 1971 Nov 24;234(47):115–118. doi: 10.1038/newbio234115a0. [DOI] [PubMed] [Google Scholar]
- Garamvölgyi N., Vizi E. S., Knoll J. The site and state of myosin in intestinal smooth muscle. Philos Trans R Soc Lond B Biol Sci. 1973 Mar 15;265(867):219–222. doi: 10.1098/rstb.1973.0026. [DOI] [PubMed] [Google Scholar]
- Goldman R. D., Follett E. A. The structure of the major cell processes of isolated BHK21 fibroblasts. Exp Cell Res. 1969 Oct;57(2):263–276. doi: 10.1016/0014-4827(69)90150-5. [DOI] [PubMed] [Google Scholar]
- Goldman R. D. The effects of cytochalasin B on the microfilaments of baby hamster kidney (BHK-21) cells. J Cell Biol. 1972 Feb;52(2):246–254. doi: 10.1083/jcb.52.2.246. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hagopian M., Spiro D. Derivation of the Z line in the embryonic chick heart. J Cell Biol. 1970 Mar;44(3):683–687. doi: 10.1083/jcb.44.3.683. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heumann H. G. Smooth muscle: contraction hypothesis based on the arrangement of actin and myosin filaments in different states of contraction. Philos Trans R Soc Lond B Biol Sci. 1973 Mar 15;265(867):213–217. doi: 10.1098/rstb.1973.0025. [DOI] [PubMed] [Google Scholar]
- Ishikawa H., Bischoff R., Holtzer H. Formation of arrowhead complexes with heavy meromyosin in a variety of cell types. J Cell Biol. 1969 Nov;43(2):312–328. [PMC free article] [PubMed] [Google Scholar]
- Kelly D. E. Myofibrillogenesis and Z-band differentiation. Anat Rec. 1969 Mar;163(3):403–425. doi: 10.1002/ar.1091630305. [DOI] [PubMed] [Google Scholar]
- Kelly R. E., Rice R. V. Ultrastructural studies on the contractile mechanism of smooth muscle. J Cell Biol. 1969 Sep;42(3):683–694. doi: 10.1083/jcb.42.3.683. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kletzien R. F., Perdue J. F. The inhibition of sugar transport in chick embryo fibroblasts by cytochalasin B. Evidence for a membrane-specific effect. J Biol Chem. 1973 Jan 25;248(2):711–719. [PubMed] [Google Scholar]
- Malech H. L., Lentz T. L. Microfilaments in epidermal cancer cells. J Cell Biol. 1974 Feb;60(2):473–482. doi: 10.1083/jcb.60.2.473. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McNutt N. S., Culp L. A., Black P. H. Contact-inhibited revertant cell lines isolated from SV 40-transformed cells. IV. Microfilament distribution and cell shape in untransformed, transformed, and revertant Balb-c 3T3 cells. J Cell Biol. 1973 Feb;56(2):412–428. doi: 10.1083/jcb.56.2.412. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McNutt N. S., Culp L. A., Black P. H. Contact-inhibited revertant cell lines isolated from SV40-transformed cells. II. Ultrastructural study. J Cell Biol. 1971 Sep;50(3):691–708. doi: 10.1083/jcb.50.3.691. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miranda A. F., Godman G. C., Deitch A. D., Tanenbaum S. W. Action of cytochalasin D on cells of established lines. I. Early events. J Cell Biol. 1974 May;61(2):481–500. doi: 10.1083/jcb.61.2.481. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miranda A. F., Godman G. C., Deitch A. D., Tanenbaum S. W. Action of cytochalasin D on cells of established lines. I. Early events. J Cell Biol. 1974 May;61(2):481–500. doi: 10.1083/jcb.61.2.481. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miranda A. F., Godman G. C. The effects of cytochalasin D on differentiating muscle in culture. Tissue Cell. 1973;5(1):1–22. doi: 10.1016/s0040-8166(73)80002-3. [DOI] [PubMed] [Google Scholar]
- Mizel S. B., Wilson L. Inhibition of the transport of several hexoses in mammalian cells by cytochalasin B. J Biol Chem. 1972 Jun 25;247(12):4102–4105. [PubMed] [Google Scholar]
- Nicklas W. J., Berl S. Effects of cytochalasin B on uptake and release of putative transmitters by synaptosomes and on brain actomyosin-like protein. Nature. 1974 Feb 15;247(5441):471–473. doi: 10.1038/247471a0. [DOI] [PubMed] [Google Scholar]
- Panner B. J., Honig C. R. Filament ultrastructure and organization in vertebrate smooth muscle. Contraction hypothesis based on localization of actin and myosin. J Cell Biol. 1967 Nov;35(2):303–321. doi: 10.1083/jcb.35.2.303. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pollard T. D., Ito S. Cytoplasmic filaments of Amoeba proteus. I. The role of filaments in consistency changes and movement. J Cell Biol. 1970 Aug;46(2):267–289. doi: 10.1083/jcb.46.2.267. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pollard T. D., Shelton E., Weihing R. R., Korn E. D. Ultrastructural characterization of F-actin isolated from Acanthamoeba castellanii and identification of cytoplasmic filaments as F-actin by reaction with rabbit heavy meromyosin. J Mol Biol. 1970 May 28;50(1):91–97. doi: 10.1016/0022-2836(70)90106-3. [DOI] [PubMed] [Google Scholar]
- Puszkin E., Puszkin S., Lo L. W., Tanenbaum S. W. Binding of cytochalasin D to platelet and muscle myosin. J Biol Chem. 1973 Nov 25;248(22):7754–7761. [PubMed] [Google Scholar]
- Rice R. V., McManus G. M., Devine O. F., Somlyo A. P. Regular organization of thick filaments in mammalian smooth muscle. Nat New Biol. 1971 Jun 23;231(25):242–243. doi: 10.1038/newbio231242a0. [DOI] [PubMed] [Google Scholar]
- Rosenbluth J. Myosin-like aggregates in trypsin-treated smooth muscle cells. J Cell Biol. 1971 Jan;48(1):174–188. doi: 10.1083/jcb.48.1.174. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rosenbluth J. Myosin-like tactoids in trypsin-treated blood platelets. J Cell Biol. 1971 Sep;50(3):900–904. doi: 10.1083/jcb.50.3.900. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schroeder T. E. Actin in dividing cells: contractile ring filaments bind heavy meromyosin. Proc Natl Acad Sci U S A. 1973 Jun;70(6):1688–1692. doi: 10.1073/pnas.70.6.1688. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spooner B. S., Wessells N. K. An analysis of salivary gland morphogenesis: role of cytoplasmic microfilaments and microtubules. Dev Biol. 1972 Jan;27(1):38–54. doi: 10.1016/0012-1606(72)90111-x. [DOI] [PubMed] [Google Scholar]
- Spooner B. S., Yamada K. M., Wessells N. K. Microfilaments and cell locomotion. J Cell Biol. 1971 Jun;49(3):595–613. doi: 10.1083/jcb.49.3.595. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spudich J. A., Lin S. Cytochalasin B, its interaction with actin and actomyosin from muscle (cell movement-microfilaments-rabbit striated muscle). Proc Natl Acad Sci U S A. 1972 Feb;69(2):442–446. doi: 10.1073/pnas.69.2.442. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tatsumi N., Shibata N., Okamura Y., Takeuchi K., Senda N. Actin and myosin A from leucocytes. Biochim Biophys Acta. 1973 May 30;305(2):433–444. doi: 10.1016/0005-2728(73)90189-8. [DOI] [PubMed] [Google Scholar]
- Taylor D. L., Condeelis J. S., Moore P. L., Allen R. D. The contractile basis of amoeboid movement. I. The chemical control of motility in isolated cytoplasm. J Cell Biol. 1973 Nov;59(2 Pt 1):378–394. doi: 10.1083/jcb.59.2.378. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taylor E. L., Wessells N. K. Cytochalasin B: alterations in salivary gland morphogenesis not due to glucose depletion. Dev Biol. 1973 Apr;31(2):421–425. doi: 10.1016/0012-1606(73)90277-7. [DOI] [PubMed] [Google Scholar]
- Wikswo M. A., Szabo G. Effects of cytochalasin B on mammalian melanocytes and keratinocytes. J Invest Dermatol. 1972 Aug;59(2):163–169. doi: 10.1111/1523-1747.ep12625950. [DOI] [PubMed] [Google Scholar]
- Wrenn J. T. An analysis of tubular gland morphogenesis in chick oviduct. Dev Biol. 1971 Nov;26(3):400–415. doi: 10.1016/0012-1606(71)90072-8. [DOI] [PubMed] [Google Scholar]
- Yamada K. M., Spooner B. S., Wessells N. K. Ultrastructure and function of growth cones and axons of cultured nerve cells. J Cell Biol. 1971 Jun;49(3):614–635. doi: 10.1083/jcb.49.3.614. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yamada K. M., Wessells N. K. Cytochalasin B: effects on membrane ruffling, growth cone and microspike activity, and microfilament structure not due to altered glucose transport. Dev Biol. 1973 Apr;31(2):413–420. doi: 10.1016/0012-1606(73)90276-5. [DOI] [PubMed] [Google Scholar]
- Zucker-Franklin D., Grusky G. The actin and myosin filaments of human and bovine blood platelets. J Clin Invest. 1972 Feb;51(2):419–430. doi: 10.1172/JCI106828. [DOI] [PMC free article] [PubMed] [Google Scholar]