Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1974 Aug 1;62(2):295–304. doi: 10.1083/jcb.62.2.295

FINE STRUCTURAL DEMONSTRATION OF ORDERED ARRAYS OF CYTOPLASMIC FILAMENTS IN VERTEBRATE IRIDOPHORES

A Comparative Survey

Susannah T Rohrlich 1
PMCID: PMC2109405  PMID: 4139162

Abstract

Thin and thick sections of both physiologically active and physiologically passive iridophores from a range of vertebrate species have been examined by electron microscopy at 60 kV and at 1,000 kV. All iridophores studied have been found to contain 65-Å filaments linking successive crystals in their parallel stacks; their orientation in the cell is shown in stereo pairs of 0.25-µm sections obtained from high voltage microscopy. In addition, several of the physiologically passive iridophores contain 100-Å filaments in varying numbers. It is suggested that the thin filaments might be iridophore actin and play a role in the movement of iridophore components, and that the 100-Å filaments might play a cytoskeletal role in the iridophores in which they occur.

Full Text

The Full Text of this article is available as a PDF (1,001.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Dartnall H. J., Arden G. B., Ikeda H., Luck C. P., Rosenberg M. E., Pedler C. M., Tansley K. Anatomical, electrophysiological and pigmentary aspects of vision in the bush baby: an interpretative study. Vision Res. 1965 Aug;5(7):399–424. doi: 10.1016/0042-6989(65)90049-0. [DOI] [PubMed] [Google Scholar]
  2. Fay F. S., Cooke P. H. Reversible disaggregation of myofilaments in vertebrate smooth muscle. J Cell Biol. 1973 Feb;56(2):399–411. doi: 10.1083/jcb.56.2.399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ishikawa H., Bischoff R., Holtzer H. Formation of arrowhead complexes with heavy meromyosin in a variety of cell types. J Cell Biol. 1969 Nov;43(2):312–328. [PMC free article] [PubMed] [Google Scholar]
  4. Ishikawa H., Bischoff R., Holtzer H. Mitosis and intermediate-sized filaments in developing skeletal muscle. J Cell Biol. 1968 Sep;38(3):538–555. doi: 10.1083/jcb.38.3.538. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Kelly D. E. Myofibrillogenesis and Z-band differentiation. Anat Rec. 1969 Mar;163(3):403–425. doi: 10.1002/ar.1091630305. [DOI] [PubMed] [Google Scholar]
  6. Melamed J., Trujillo-Cenóz O. The fine structure of the visual system of Lycosa (Araneae: Lycosidae). I. Retina and optic nerve. Z Zellforsch Mikrosk Anat. 1966;74(1):12–31. doi: 10.1007/BF00342937. [DOI] [PubMed] [Google Scholar]
  7. Mirow S. Skin color in the squids Loligo pealii and Loligo opalescens. II. Iridophores. Z Zellforsch Mikrosk Anat. 1972;125(2):176–190. doi: 10.1007/BF00306787. [DOI] [PubMed] [Google Scholar]
  8. REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Rohrlich S. T., Porter K. R. Fine structural observations relating to the production of color by the iridophores of a lizard. Anolis carolinensis. J Cell Biol. 1972 Apr;53(1):38–52. doi: 10.1083/jcb.53.1.38. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Setoguti G. Ultrastructure of guanophores. J Ultrastruct Res. 1967 May;18(3):324–332. doi: 10.1016/s0022-5320(67)80121-7. [DOI] [PubMed] [Google Scholar]
  11. Strum J. M. Fine structure of the dermal luminescent organs, photophores, in the fish, Porichthys notatus. Anat Rec. 1969 Aug;164(4):433–461. doi: 10.1002/ar.1091640404. [DOI] [PubMed] [Google Scholar]
  12. Taylor J. D. The effects of intermedin on the ultrastructure of amphibian iridophores. Gen Comp Endocrinol. 1969 Jun;12(3):405–416. doi: 10.1016/0016-6480(69)90157-9. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES