Abstract
Thin and thick sections of both physiologically active and physiologically passive iridophores from a range of vertebrate species have been examined by electron microscopy at 60 kV and at 1,000 kV. All iridophores studied have been found to contain 65-Å filaments linking successive crystals in their parallel stacks; their orientation in the cell is shown in stereo pairs of 0.25-µm sections obtained from high voltage microscopy. In addition, several of the physiologically passive iridophores contain 100-Å filaments in varying numbers. It is suggested that the thin filaments might be iridophore actin and play a role in the movement of iridophore components, and that the 100-Å filaments might play a cytoskeletal role in the iridophores in which they occur.
Full Text
The Full Text of this article is available as a PDF (1,001.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Dartnall H. J., Arden G. B., Ikeda H., Luck C. P., Rosenberg M. E., Pedler C. M., Tansley K. Anatomical, electrophysiological and pigmentary aspects of vision in the bush baby: an interpretative study. Vision Res. 1965 Aug;5(7):399–424. doi: 10.1016/0042-6989(65)90049-0. [DOI] [PubMed] [Google Scholar]
- Fay F. S., Cooke P. H. Reversible disaggregation of myofilaments in vertebrate smooth muscle. J Cell Biol. 1973 Feb;56(2):399–411. doi: 10.1083/jcb.56.2.399. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ishikawa H., Bischoff R., Holtzer H. Formation of arrowhead complexes with heavy meromyosin in a variety of cell types. J Cell Biol. 1969 Nov;43(2):312–328. [PMC free article] [PubMed] [Google Scholar]
- Ishikawa H., Bischoff R., Holtzer H. Mitosis and intermediate-sized filaments in developing skeletal muscle. J Cell Biol. 1968 Sep;38(3):538–555. doi: 10.1083/jcb.38.3.538. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kelly D. E. Myofibrillogenesis and Z-band differentiation. Anat Rec. 1969 Mar;163(3):403–425. doi: 10.1002/ar.1091630305. [DOI] [PubMed] [Google Scholar]
- Melamed J., Trujillo-Cenóz O. The fine structure of the visual system of Lycosa (Araneae: Lycosidae). I. Retina and optic nerve. Z Zellforsch Mikrosk Anat. 1966;74(1):12–31. doi: 10.1007/BF00342937. [DOI] [PubMed] [Google Scholar]
- Mirow S. Skin color in the squids Loligo pealii and Loligo opalescens. II. Iridophores. Z Zellforsch Mikrosk Anat. 1972;125(2):176–190. doi: 10.1007/BF00306787. [DOI] [PubMed] [Google Scholar]
- REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rohrlich S. T., Porter K. R. Fine structural observations relating to the production of color by the iridophores of a lizard. Anolis carolinensis. J Cell Biol. 1972 Apr;53(1):38–52. doi: 10.1083/jcb.53.1.38. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Setoguti G. Ultrastructure of guanophores. J Ultrastruct Res. 1967 May;18(3):324–332. doi: 10.1016/s0022-5320(67)80121-7. [DOI] [PubMed] [Google Scholar]
- Strum J. M. Fine structure of the dermal luminescent organs, photophores, in the fish, Porichthys notatus. Anat Rec. 1969 Aug;164(4):433–461. doi: 10.1002/ar.1091640404. [DOI] [PubMed] [Google Scholar]
- Taylor J. D. The effects of intermedin on the ultrastructure of amphibian iridophores. Gen Comp Endocrinol. 1969 Jun;12(3):405–416. doi: 10.1016/0016-6480(69)90157-9. [DOI] [PubMed] [Google Scholar]
