Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1974 Aug 1;62(2):460–472. doi: 10.1083/jcb.62.2.460

OBSERVATIONS ON EARLY GERM CELL DEVELOPMENT AND PREMEIOTIC RIBOSOMAL DNA AMPLIFICATION IN XENOPUS LAEVIS

Marvin R Kalt 1, Joseph G Gall 1
PMCID: PMC2109412  PMID: 4426916

Abstract

The origin of premeiotic ribosomal DNA (rDNA) amplification in germ-line cells of Xenopus laevis has been examined using in situ RNA-DNA hybridization on cytological preparations, tritiated thymidine autoradiography, and isopycnic density gradient centrifugation. Primordial germ cells (PGC), from the time they first become localized in the genital ridge at day no. 4 of development, until approximately day no. 22, remain in an extended interphase condition. During this time PGC do not incorporate tritiated thymidine, have near diploid levels of rDNA as demonstrated by cytological RNA-DNA hybridization, and possess only one or two nucleoli. Starting on day no. 22–24, mitosis, sexual differentiation, and rDNA gene amplification all begin in the germ cells. Multiple nucleoli also make their appearance at this stage. Ribosomal DNA amplification continues in gonial cells as long as they remain mitotically active. Amplified copies of rDNA are lost from germ cells at the onset of meiotic prophase. This loss is probably permanent in the male germ line, but variable and temporary in the female germ line. Early gonial cells in the ovary have been deduced to have an average cycle time for each mitotic division of between 3.8 and 4.3 days at a temperature of 21°C. Some oogonia appear to divide only four times before entering meiotic prophase, while the average during the initial wave of germ cell division is nine. Finally, a satellite DNA has been isolated from adult testes which has a density in neutral cesium chloride corresponding to the density of amplified oocyte rDNA. This satellite is not present in DNA isolated from somatic tissues of Xenopus.

Full Text

The Full Text of this article is available as a PDF (1,001.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barsacchi G., Gall J. G. Chromosomal localization of repetitive DNA in the newt, Triturus. J Cell Biol. 1972 Sep;54(3):580–591. doi: 10.1083/jcb.54.3.580. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bird A. P., Birnstiel M. L. A timing study of DNA amplification in Xenopus laevis oocytes. Chromosoma. 1971;35(3):300–309. doi: 10.1007/BF00326280. [DOI] [PubMed] [Google Scholar]
  3. Birnstiel M., Speirs J., Purdom I., Jones K., Loening U. E. Properties and composition of the isolated ribosomal DNA satellite of Xenopus laevis. Nature. 1968 Aug 3;219(5153):454–463. doi: 10.1038/219454a0. [DOI] [PubMed] [Google Scholar]
  4. Brown D. D., Blackler A. W. Gene amplification proceeds by a chromosome copy mechanism. J Mol Biol. 1972 Jan 14;63(1):75–83. doi: 10.1016/0022-2836(72)90522-0. [DOI] [PubMed] [Google Scholar]
  5. Brown D. D., Dawid I. B. Specific gene amplification in oocytes. Oocyte nuclei contain extrachromosomal replicas of the genes for ribosomal RNA. Science. 1968 Apr 19;160(3825):272–280. doi: 10.1126/science.160.3825.272. [DOI] [PubMed] [Google Scholar]
  6. Buehr M. L., Blackler A. W. Sterility and partial sterility in the South African clawed toad following the pricking of the egg. J Embryol Exp Morphol. 1970 Apr;23(2):375–384. [PubMed] [Google Scholar]
  7. Coggins L. W. An ultrastructural and radioautographic study of early oogenesis in the toad Xenopus laevis. J Cell Sci. 1973 Jan;12(1):71–93. doi: 10.1242/jcs.12.1.71. [DOI] [PubMed] [Google Scholar]
  8. Coggins L. W., Gall J. G. The timing of meiosis and DNA synthesis during early oogenesis in the toad, Xenopus laevis. J Cell Biol. 1972 Mar;52(3):569–576. doi: 10.1083/jcb.52.3.569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. DAVIDSON E. H., ALLFREY V. G., MIRSKY A. E. ON THE RNA SYNTHESIZED DURING THE LAMPBRUSH PHASE OF AMPHIBIAN OOEGENESIS. Proc Natl Acad Sci U S A. 1964 Aug;52:501–508. doi: 10.1073/pnas.52.2.501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dawid I. B., Brown D. D., Reeder R. H. Composition and structure of chromosomal and amplified ribosomal DNA's of Xenopus laevis. J Mol Biol. 1970 Jul 28;51(2):341–360. doi: 10.1016/0022-2836(70)90147-6. [DOI] [PubMed] [Google Scholar]
  11. Flamm W. G., McCallum M., Walker P. M. The isolation of complementary strands from a mouse DNA fraction. Proc Natl Acad Sci U S A. 1967 Jun;57(6):1729–1734. doi: 10.1073/pnas.57.6.1729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. GALLIEN L. Inversion totale du sexe chez Xenopus laevis Daud. à la suite d'un traitement gynogène par le benzoate d'oestradiol, administré pendant la vie larvaire. C R Hebd Seances Acad Sci. 1953 Dec 9;237(23):1565–1566. [PubMed] [Google Scholar]
  13. Gall J. G. Differential synthesis of the genes for ribosomal RNA during amphibian oögenesis. Proc Natl Acad Sci U S A. 1968 Jun;60(2):553–560. doi: 10.1073/pnas.60.2.553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gall J. G., Pardue M. L. Formation and detection of RNA-DNA hybrid molecules in cytological preparations. Proc Natl Acad Sci U S A. 1969 Jun;63(2):378–383. doi: 10.1073/pnas.63.2.378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hourcade D., Dressler D., Wolfson J. The amplification of ribosomal RNA genes involves a rolling circle intermediate. Proc Natl Acad Sci U S A. 1973 Oct;70(10):2926–2930. doi: 10.1073/pnas.70.10.2926. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kalt M. R. Ultrastructural observations on the germ line of Xenopus laevis. Z Zellforsch Mikrosk Anat. 1973 Mar 21;138(1):41–62. doi: 10.1007/BF00307077. [DOI] [PubMed] [Google Scholar]
  17. Wallace H., Birnstiel M. L. Ribosomal cistrons and the nucleolar organizer. Biochim Biophys Acta. 1966 Feb 21;114(2):296–310. doi: 10.1016/0005-2787(66)90311-x. [DOI] [PubMed] [Google Scholar]
  18. Wallace H., Morray J., Langridge W. H. Alternative model for gene amplification. Nat New Biol. 1971 Apr 14;230(15):201–203. doi: 10.1038/newbio230201a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES