Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1975 May 1;65(2):258–270. doi: 10.1083/jcb.65.2.258

Structural and transcriptional features of the mouse spermatid genome

PMCID: PMC2109421  PMID: 1127016

Abstract

A whole-mount electron microscope technique has allowed direct visualization of the transcription process in mouse spermatids. Thes observations have been supported by light and electron microscope autoradiographic techniques that employ [3H]uridine and [3H]arginine in attempts to clarify mechanisms of RNA synthesis and their relationship to nuclear histone changes throughout spermiogenesis. Early spermatid genomes are dispersed almost completely, whereas in later spermiogenic steps the posterior or flagellar nuclear region is readily dispersed and the anterior or subacrosomal nuclear region remains compact. Display of genome segments permits identification of regions where transcription complexes, presumably heterogeneous nuclear RNA species, are seen related to chromatin. These complexes appear as ribonucleoprotein chains, some of them of considerable length, decreasing progressively in number in late spermiogenic steps. This decrease coincides with diminishing rates of [3H]uridine incorporation. Two distinct patterns of chromatin have been identified: a beaded chromatin type associated with transcription complexes encounterd in early spermatids; and a smooth chromatin type not involved in transcriptive activity observed in advanced spermiogenic genomes. Protein particles staining densely with phosphotungstic acid become apparent in nuclei of spermatids after [3H]arginine incorporation becomes significant. There is no structural or autoradiographic evidence for the presence of nucleoli during spermiogenesis. From these data and from previous experimental findings, we conclude that: (a) spermatogonia, spermatocytes and Sertoli cells are transcriptionally expressed into heterogeneous nuclear RNA and preribosomal RNA species whereas transcription in spermatids is predominantly heterogeneous nuclear RNA; and (b) the modification of the chromatin patterns in late spermiogenic steps indicates a stabilized genome that restricts transcriptive functions.

Full Text

The Full Text of this article is available as a PDF (4.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BURGOS M. H., FAWCETT D. W. Studies on the fine structure of the mammalian testis. I. Differentiation of the spermatids in the cat (Felis domestica). J Biophys Biochem Cytol. 1955 Jul 25;1(4):287–300. doi: 10.1083/jcb.1.4.287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barcellona W. J., Brackeen R. B., Brinkley B. R. Differential binding of tritiated actinomycin to the nuclei of mammalian spermatogenic cells in vivo. J Reprod Fertil. 1974 Jul;39(1):41–48. doi: 10.1530/jrf.0.0390041. [DOI] [PubMed] [Google Scholar]
  3. Brachet J., Hulin N. Binding of tritiated actinomycin and cell differentiation. Nature. 1969 May 3;222(5192):481–482. doi: 10.1038/222481a0. [DOI] [PubMed] [Google Scholar]
  4. Burgi A. W., Robinton J., Carlson C. L. Studies on the folded chromosome of Escherichia coli. Cold Spring Harb Symp Quant Biol. 1974;38:43–51. doi: 10.1101/sqb.1974.038.01.007. [DOI] [PubMed] [Google Scholar]
  5. Calvin H. I., Bedford J. M. Formation of disulphide bonds in the nucleus and accessory structures of mammalian spermatozoa during maturation in the epididymis. J Reprod Fertil Suppl. 1971 May;13(Suppl):65–75. [PubMed] [Google Scholar]
  6. Coelingh J. P., Rozijn T. H., Monfoort C. H. Isolation and partial characterization of a basic protein from bovine sperm heads. Biochim Biophys Acta. 1969;188(2):353–356. doi: 10.1016/0005-2795(69)90091-9. [DOI] [PubMed] [Google Scholar]
  7. Darzynkiewicz Z., Gledhill B. L., Ringertz N. R. Changes in deoxyribonucleo-protein during spermiogenesis in the bull. 3 H-Actinomycin D binding capacity. Exp Cell Res. 1969 Dec;58(2):435–438. doi: 10.1016/0014-4827(69)90527-8. [DOI] [PubMed] [Google Scholar]
  8. Dixon G. H., Ingles C. J., Jergil B., Ling V., Marushige K. Protein transformations during differentiation of trout testis. Proc Can Cancer Conf. 1969;8:76–102. [PubMed] [Google Scholar]
  9. Galdieri M., Monesi V. Ribosomal RNA synthesis in spermatogonia and Sertoli cells of the mouse testis. Exp Cell Res. 1973 Jul;80(1):120–126. doi: 10.1016/0014-4827(73)90282-6. [DOI] [PubMed] [Google Scholar]
  10. Gledhill B. L., Darzynkiewicz Z., Ringertz N. R. Changes in deoxyribonucleoprotein during spermiogenesis in the bull: increased (3H)actinomycin D binding to nuclear chromatin of morphologically abnormal spermatozoa. J Reprod Fertil. 1971 Jul;26(1):25–38. doi: 10.1530/jrf.0.0260025. [DOI] [PubMed] [Google Scholar]
  11. Hamkalo B. A., Miller O. L., Jr Electronmicroscopy of genetic activity. Annu Rev Biochem. 1973;42:379–396. doi: 10.1146/annurev.bi.42.070173.002115. [DOI] [PubMed] [Google Scholar]
  12. Kierszenbaum A. L. RNA synthetic activities of sertoli cells in the mouse testis. Biol Reprod. 1974 Nov;11(4):365–376. doi: 10.1095/biolreprod11.4.365. [DOI] [PubMed] [Google Scholar]
  13. Kierszenbaum A. L., Tres L. L. Nucleolar and perichromosomal RNA synthesis during meiotic prophase in the mouse testis. J Cell Biol. 1974 Jan;60(1):39–53. doi: 10.1083/jcb.60.1.39. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kierszenbaum A. L., Tres L. L. Transcription sites in spread meiotic prophase chromosomes from mouse spermatocytes. J Cell Biol. 1974 Dec;63(3):923–935. doi: 10.1083/jcb.63.3.923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kistler W. S., Geroch M. E., Williams-Ashman H. G. Specific basic proteins from mammalian testes. Isolation and properties of small basic proteins from rat testes and epididymal spermatozoa. J Biol Chem. 1973 Jul 10;248(13):4532–4543. [PubMed] [Google Scholar]
  16. Lam D. M., Bruce W. R. The biosynthesis of protamine during spermatogenesis of the mouse: extraction, partial characterization, and site of synthesis. J Cell Physiol. 1971 Aug;78(1):13–24. doi: 10.1002/jcp.1040780104. [DOI] [PubMed] [Google Scholar]
  17. Lung B. Ultrastructure and chromatin disaggregation of human sperm head with thioglycolate treatment. J Cell Biol. 1972 Jan;52(1):179–186. doi: 10.1083/jcb.52.1.179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lung B. Whole-mount electron microscopy of chromatin and membranes in bull and human sperm heads. J Ultrastruct Res. 1968 Mar;22(5):485–493. doi: 10.1016/s0022-5320(68)90036-1. [DOI] [PubMed] [Google Scholar]
  19. MONESI V. AUTORADIOGRAPHIC EVIDENCE OF A NUCLEAR HISTONE SYNTHESIS DURING MOUSE SPERMIOGENESIS IN THE ABSENCE OF DETECTABLE QUANTITIES OF NUCLEAR RIBONUCLEIC ACID. Exp Cell Res. 1964 Dec;36:683–688. doi: 10.1016/0014-4827(64)90326-x. [DOI] [PubMed] [Google Scholar]
  20. Marushige Y., Marushige K. Haemodynamic and coronary vascular responses after beta-adrenoceptor blockade in the anaesthetised dog: a comparison of tolamolol with practolol and propranolol. Biochim Biophys Acta. 1974 Apr 10;340(4):498–508. [PubMed] [Google Scholar]
  21. Marushige Y., Marushige K. Transformation of sperm histone during formation and maturation of rat spermatozoa. J Biol Chem. 1975 Jan 10;250(1):39–45. [PubMed] [Google Scholar]
  22. Miller O. L., Jr, Bakken A. H. Morphological studies of transcription. Acta Endocrinol Suppl (Copenh) 1972;168:155–177. doi: 10.1530/acta.0.071s155. [DOI] [PubMed] [Google Scholar]
  23. Moore G. P. DNA-dependent RNA synthesis in fixed cells during spermatogenesis in mouse. Exp Cell Res. 1971 Oct;68(2):462–465. doi: 10.1016/0014-4827(71)90176-5. [DOI] [PubMed] [Google Scholar]
  24. Noll M. Subunit structure of chromatin. Nature. 1974 Sep 20;251(5472):249–251. doi: 10.1038/251249a0. [DOI] [PubMed] [Google Scholar]
  25. OAKBERG E. F. A description of spermiogenesis in the mouse and its use in analysis of the cycle of the seminiferous epithelium and germ cell renewal. Am J Anat. 1956 Nov;99(3):391–413. doi: 10.1002/aja.1000990303. [DOI] [PubMed] [Google Scholar]
  26. Olins A. L., Olins D. E. Spheroid chromatin units (v bodies). Science. 1974 Jan 25;183(4122):330–332. doi: 10.1126/science.183.4122.330. [DOI] [PubMed] [Google Scholar]
  27. Phillips D. M. Insect sperm: their structure and morphogenesis. J Cell Biol. 1970 Feb;44(2):243–277. doi: 10.1083/jcb.44.2.243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Ringertz N. R., Gledhill B. L., Darzynkiewicz Z. Changes in deoxyribonucleoprotein during spermiogenesis in the bull. Sensitivity of DNA to heat denaturation. Exp Cell Res. 1970 Sep;62(1):204–218. doi: 10.1016/0014-4827(79)90521-4. [DOI] [PubMed] [Google Scholar]
  29. Salpeter M. M., Szabo M. Sensitivity in electron microscope autoradiography. I. The effect of radiation dose. J Histochem Cytochem. 1972 Jun;20(6):425–434. doi: 10.1177/20.6.425. [DOI] [PubMed] [Google Scholar]
  30. Silverman L., Glick D. The reactivity and staining of tissue proteins with phosphotungstic acid. J Cell Biol. 1969 Mar;40(3):761–767. doi: 10.1083/jcb.40.3.761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Sobell H. M., Jain S. C. Stereochemistry of actinomycin binding to DNA. II. Detailed molecular model of actinomycin-DNA complex and its implications. J Mol Biol. 1972 Jul 14;68(1):21–34. doi: 10.1016/0022-2836(72)90259-8. [DOI] [PubMed] [Google Scholar]
  32. Utakoji T. Chronology of nucleic acid synthesis in meiosis of the male Chinese hamster. Exp Cell Res. 1966 Jun;42(3):585–596. doi: 10.1016/0014-4827(66)90271-0. [DOI] [PubMed] [Google Scholar]
  33. Zirkin B. R. The fine structure of nuclei in mature sperm. I. Application of the Langmuir trough-critical point method to histone-containing sperm nuclei. J Ultrastruct Res. 1971 Jul;36(1):237–248. doi: 10.1016/s0022-5320(71)80101-6. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES