Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1975 May 1;65(2):398–417. doi: 10.1083/jcb.65.2.398

Nucleolar necklaces in chick embryo fibroblast cells. I. Formation of necklaces by dichlororibobenzimidazole and other adenosine analogues that decrease RNA synthesis and degrade preribosomes

PMCID: PMC2109428  PMID: 1168650

Abstract

A number of chemicals, mostly adenosine analogues, cause the nucleolus of the chick embryo fibroblast to lose material and unravel over a period of several hours into beaded strands termed nucleolar necklaces (NN). The results of analyses of the fibroblasts, treated with the NN- forming chemical dichlororibobenzimidazole (DRB), suggests that the following biochemical alterations occur: DRB almost completely prevents the increase in both messenger RNA (mRNA) and heterogeneous nuclear RNA. It interferes with ribosome synthesis by decreasing the rate of 45S ribosomal RNA (rRNA) accumulation by 50%, slowing the rate of 18S rRNA appearance by 50%, and causing an extensive degradation (80%) of the 32S and 28S rRNA-containing preribisomes. Most of this preribosome degration probably occurs at or before the 32S rRNA preribosome stage. The degradation of these preribosomes appears to be due to the formation of defective 45S rRNA preribosomes rather than to a direct DRB interference with preribosome processing enzyme action. DRB inhibits total cellular RNA synthesis in less than 15 min, suggesting a direct interference with RNA synthesis. DRB also inhibits the uptake of nucleosides into the cell. DRB in the concentrations used does not appear to directly interfere with the translation of mRNA (i.e., protein synthesis). Other NN-forming adenoside analogues and high concentrations of adenosine (2 mM) cause biochemical alterations similar to those produced by DRB. To explain the preribosome degradation, we propose the hypothesis that DRB inhibits the synthesis of mRNA; as a consequence, some of the preribosomal proteins that normally coat the 32S rRNA portion of the 45S precursor RNA become limiting, and this defective portion is then subject to degradation by nucleases.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Attardi G., Amaldi F. Structure and synthesis of ribosomal RNA. Annu Rev Biochem. 1970;39:183–226. doi: 10.1146/annurev.bi.39.070170.001151. [DOI] [PubMed] [Google Scholar]
  2. Brdar B., Rifkin D. B., Reich E. Studies of Rous sarcoma virus. Effects of nucleoside analogues on virus synthesis. J Biol Chem. 1973 Apr 10;248(7):2397–2408. [PubMed] [Google Scholar]
  3. Bucknall R. A. The effects of substituted benzimidazoles on the growth of viruses and the nucleic acid metabolism of host cells. J Gen Virol. 1967 Jan;1(1):89–99. doi: 10.1099/0022-1317-1-1-89. [DOI] [PubMed] [Google Scholar]
  4. Choules G. L., Zimm B. H. An acrylamide gel soluble in scintillation fluids: its application to electrophoresis at neutral and low pH. Anal Biochem. 1965 Nov;13(2):336–344. doi: 10.1016/0003-2697(65)90202-2. [DOI] [PubMed] [Google Scholar]
  5. Craig N. C., Perry R. P. Aberrant intranucleolar maturation of ribosomal precursors in the absence of protein synthesis. J Cell Biol. 1970 Jun;45(3):554–564. doi: 10.1083/jcb.45.3.554. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Craig N. The effects of inhibitors of RNA and DNA synthesis on protein synthesis and polysome levels in mouse L-cells. J Cell Physiol. 1973 Oct;82(2):133–150. doi: 10.1002/jcp.1040820202. [DOI] [PubMed] [Google Scholar]
  7. Granick D. Nucleolar necklaces in chick embryo fibroblast cells. II. Microscope observations of the effect of adenosine analogues on nucleolar necklace formation. J Cell Biol. 1975 May;65(2):418–427. doi: 10.1083/jcb.65.2.418. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Granick S., Granick D. Nucleolar necklaces in chick embryo myoblasts formed by lack of arginine. J Cell Biol. 1971 Dec;51(3):636–642. doi: 10.1083/jcb.51.3.636. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Granick S., Sassa S., Granick J. L., Levere R. D., Kappas A. Assays for porphyrins, delta-aminolevulinic-acid dehydratase, and porphyrinogen synthetase in microliter samples of whole blood: applications to metabolic defects involving the heme pathway. Proc Natl Acad Sci U S A. 1972 Sep;69(9):2381–2385. doi: 10.1073/pnas.69.9.2381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Granick S. The induction in vitro of the synthesis of delta-aminolevulinic acid synthetase in chemical porphyria: a response to certain drugs, sex hormones, and foreign chemicals. J Biol Chem. 1966 Mar 25;241(6):1359–1375. [PubMed] [Google Scholar]
  11. Grayson S., Berry S. J. Estimation of the half-life of a secretory protein message. Science. 1973 Jun 8;180(4090):1071–1072. doi: 10.1126/science.180.4090.1071. [DOI] [PubMed] [Google Scholar]
  12. Green H., Chan T. Pyrimidine starvation induced by adenosine in fibroblasts and lymphoid cells: role of adenosine deaminase. Science. 1973 Nov 23;182(4114):836–837. doi: 10.1126/science.182.4114.836. [DOI] [PubMed] [Google Scholar]
  13. Lettré R., Siebs W., Paweletz N. Morphological observations on the nucleolus of cells in tissue culture, with special regard to its composition. Natl Cancer Inst Monogr. 1966 Dec;23:107–123. [PubMed] [Google Scholar]
  14. Nakata Y., Bader J. P. The uptake of nucleosides by cells in culture. II. Inhibition by 2-mercapto-1-(beta-4-pyridethyl)benzimidazole. Biochim Biophys Acta. 1969 Oct 22;190(2):250–256. doi: 10.1016/0005-2787(69)90076-8. [DOI] [PubMed] [Google Scholar]
  15. Peacock A. C., Dingman C. W. Molecular weight estimation and separation of ribonucleic acid by electrophoresis in agarose-acrylamide composite gels. Biochemistry. 1968 Feb;7(2):668–674. doi: 10.1021/bi00842a023. [DOI] [PubMed] [Google Scholar]
  16. Pederson T., Kumar A. Relationship between protein synthesis and ribosome assembly in HeLa cells. J Mol Biol. 1971 Nov 14;61(3):655–668. doi: 10.1016/0022-2836(71)90070-2. [DOI] [PubMed] [Google Scholar]
  17. Perry R. P., Cheng T. Y., Freed J. J., Greenberg J. R., Kelley D. E., Tartof K. D. Evolution of the transcription unit of ribosomal RNA. Proc Natl Acad Sci U S A. 1970 Mar;65(3):609–616. doi: 10.1073/pnas.65.3.609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Perry R. P., Kelley D. E. Inhibition of RNA synthesis by actinomycin D: characteristic dose-response of different RNA species. J Cell Physiol. 1970 Oct;76(2):127–139. doi: 10.1002/jcp.1040760202. [DOI] [PubMed] [Google Scholar]
  19. SCHERRER K., DARNELL J. E. Sedimentation characteristics of rapidly labelled RNA from HeLa cells. Biochem Biophys Res Commun. 1962 Jun 4;7:486–490. doi: 10.1016/0006-291x(62)90341-8. [DOI] [PubMed] [Google Scholar]
  20. Singer R. H., Penman S. Stability of HeLa cell mRNA in actinomycin. Nature. 1972 Nov 10;240(5376):100–102. doi: 10.1038/240100a0. [DOI] [PubMed] [Google Scholar]
  21. Skehel J. J., Hay A. J., Burke D. C., Cartwright L. N. Effects of actinomycin D and 2-mercapto-1-(beta-4-pyridethyl) benzimidazole on the incorporation of [3H]uridine by chick embryo cells. Biochim Biophys Acta. 1967 Jul 18;142(2):430–439. doi: 10.1016/0005-2787(67)90624-7. [DOI] [PubMed] [Google Scholar]
  22. Soeiro R., Vaughan M. H., Warner J. R., Darnell J. E., Jr The turnover of nuclear DNA-like RNA in HeLa cells. J Cell Biol. 1968 Oct;39(1):112–118. doi: 10.1083/jcb.39.1.112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Steck T. L., Nakata Y., Bader J. P. The uptake of nucleosides by cells in culture. I. Inhibition by heterologous nucleosides. Biochim Biophys Acta. 1969 Oct 22;190(2):237–249. doi: 10.1016/0005-2787(69)90075-6. [DOI] [PubMed] [Google Scholar]
  24. Tavitian A., Uretsky S. C., Acs G. Selective inhibition of ribosomal RNA synthesis in mammalian cells. Biochim Biophys Acta. 1968 Mar 18;157(1):33–43. doi: 10.1016/0005-2787(68)90261-x. [DOI] [PubMed] [Google Scholar]
  25. Tavitian A., Uretsky S. C., Acs G. The effect of toyocamycin on cellular RNA synthesis. Biochim Biophys Acta. 1969 Mar 18;179(1):50–57. doi: 10.1016/0005-2787(69)90121-x. [DOI] [PubMed] [Google Scholar]
  26. Tiollais P., Galibert F., Boiron M. Effects of valine deprivation on the biosynthesis of ribosomal and messenger RNA in a mammalian cell line (L 5178 Y). Eur J Biochem. 1971 Jan 1;18(1):35–45. doi: 10.1111/j.1432-1033.1971.tb01211.x. [DOI] [PubMed] [Google Scholar]
  27. Uenoyama K., Ono T. Nascent catalase and its messenger RNA on rat liver polyribosomes. J Mol Biol. 1972 Mar 14;65(1):75–89. doi: 10.1016/0022-2836(72)90493-7. [DOI] [PubMed] [Google Scholar]
  28. Warner J. R. The assembly of ribosomes in HeLa cells. J Mol Biol. 1966 Aug;19(2):383–398. doi: 10.1016/s0022-2836(66)80012-8. [DOI] [PubMed] [Google Scholar]
  29. Weinberg R. A., Loening U., Willems M., Penman S. Acrylamide gel electrophoresis of HeLa cell nucleolar RNA. Proc Natl Acad Sci U S A. 1967 Sep;58(3):1088–1095. doi: 10.1073/pnas.58.3.1088. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Weinberg R. A., Penman S. Processing of 45 s nucleolar RNA. J Mol Biol. 1970 Jan 28;47(2):169–178. doi: 10.1016/0022-2836(70)90337-2. [DOI] [PubMed] [Google Scholar]
  31. Wellauer P. K., Dawid I. B. Secondary structure maps of RNA: processing of HeLa ribosomal RNA. Proc Natl Acad Sci U S A. 1973 Oct;70(10):2827–2831. doi: 10.1073/pnas.70.10.2827. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES