Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1975 Jun 1;65(3):615–630. doi: 10.1083/jcb.65.3.615

The distribution of anionic sites on the surfaces of mitochondrial membranes. Visual probing with polycationic ferritin

PMCID: PMC2109436  PMID: 237006

Abstract

Polycationic ferritin, a multivalent ligand, was used as a visual probe to determine the distribution and density of anionic sites on the surfaces of rat liver mitochondrial membranes. Both the distribution of bound polycationic ferritin and the topography of the outer surface of the inner mitochondrial membrane were studied in depth by utilizing thin sections and critical-point dried, whole mount preparations for transmission electron microscopy and by scanning electron microscopy. Based on its relative affinity for polycationic ferritin, the surface of the inner membrane contains discrete regions of high density and low density anionic sites. Whereas the surface of the cristal membrane contains a low density of anionic sites, the surface of the inner boundary membrane contains patches of high density anionic sites. The high density anionic sites on the inner boundary membrane were found to persist as stable patches and did not dissociate or randomize freely when the membrane was converted osmotically to a spherical configuration. The observations suggest that the inner mitochondrial membrane is composed of two major regions of anionic macromolecular distinction. It is well-known that an intermembrane space exists between the two membranes of the intact mitochondrion; however, a number of contact sites occur between the two membranes. We determined that the outer membrane, partially disrupted by treatment with digitonin, remains attached to the inner membrane at these contact sites as inverted vesicles. Such attached vesicles show that the inner surface of the outer membrane contains anionic sites, but of decreased density, surrounding the contact sites. Thus, the intermembrane space in the intact mitochondrion may be maintained by electronegative surfaces of the two mitochondrial membranes. The distribution of anionic sites on the outer surface of the outer membrane is random. The nature and function of fixed anionic surface charges and membrane contact sites are discussed with regard to recent reports relating to calcium transport, protein assembly into mitochondrial membranes, and membrane fluidity.

Full Text

The Full Text of this article is available as a PDF (5.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allmann D. W., Bachmann E., Orme-Johnson N., Tan W. C., Green D. E. Membrane systems of mitochondria. VI. Membranes of liver mitochondria. Arch Biochem Biophys. 1968 Jun;125(3):981–1012. doi: 10.1016/0003-9861(68)90537-7. [DOI] [PubMed] [Google Scholar]
  2. Bosmann H. B., Myers M. W., Dehond D., Ball R., Case K. R. Mitochondrial autonomy. Sialic acid residues on the surface of isolated rat cerebral cortex and liver mitochondria. J Cell Biol. 1972 Oct;55(1):147–160. doi: 10.1083/jcb.55.1.147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brdiczka D., Dölken G., Krebs W., Hofmann D. The inner boundary membrane of mitochondria. Localization and biochemical characterization, possible functions in biogenesis and metabolism. Hoppe Seylers Z Physiol Chem. 1974 Jun;355(6):731–743. doi: 10.1515/bchm2.1974.355.1.731. [DOI] [PubMed] [Google Scholar]
  4. Danon D., Goldstein L., Marikovsky Y., Skutelsky E. Use of cationized ferritin as a label of negative charges on cell surfaces. J Ultrastruct Res. 1972 Mar;38(5):500–510. doi: 10.1016/0022-5320(72)90087-1. [DOI] [PubMed] [Google Scholar]
  5. Gomez-Puyou A., De Gomez-Puyou M. T., Becker G., Lehninger A. L. An insoluble Ca 2+ -binding factor from rat liver mitochondria. Biochem Biophys Res Commun. 1972 May 26;47(4):814–819. doi: 10.1016/0006-291x(72)90565-7. [DOI] [PubMed] [Google Scholar]
  6. Hackenbrock C. R. Chemical and physical fixation of isolated mitochondria in low-energy and high-energy states. Proc Natl Acad Sci U S A. 1968 Oct;61(2):598–605. doi: 10.1073/pnas.61.2.598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hackenbrock C. R. Energy-linked ultrastructural transformations in isolated liver mitochondria and mitoplasts. Preservation of configurations by freeze-cleaving compared to chemical fixation. J Cell Biol. 1972 May;53(2):450–465. doi: 10.1083/jcb.53.2.450. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hackenbrock C. R. States of activity and structure in mitochondrial membranes. Ann N Y Acad Sci. 1972 Jun 20;195:492–505. [PubMed] [Google Scholar]
  9. Hackenbrock C. R. Ultrastructural bases for metabolically linked mechanical activity in mitochondria. I. Reversible ultrastructural changes with change in metabolic steady state in isolated liver mitochondria. J Cell Biol. 1966 Aug;30(2):269–297. doi: 10.1083/jcb.30.2.269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hackenbrock C. R. Ultrastructural bases for metabolically linked mechanical activity in mitochondria. II. Electron transport-linked ultrastructural transformations in mitochondria. J Cell Biol. 1968 May;37(2):345–369. doi: 10.1083/jcb.37.2.345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Heidrich H. G., Stahn R., Hannig K. The surface charge of rat liver mitochondria and their membranes. Clarification of some controversies concerning mitochondrial structure. J Cell Biol. 1970 Jul;46(1):137–150. doi: 10.1083/jcb.46.1.137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jost P. C., Griffith O. H., Capaldi R. A., Vanderkooi G. Evidence for boundary lipid in membranes. Proc Natl Acad Sci U S A. 1973 Feb;70(2):480–484. doi: 10.1073/pnas.70.2.480. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Mehrishi J. N. Molecular aspects of the mammalian cell surface. Prog Biophys Mol Biol. 1972;25:1–70. doi: 10.1016/0079-6107(72)90013-2. [DOI] [PubMed] [Google Scholar]
  14. Schnaitman C., Greenawalt J. W. Enzymatic properties of the inner and outer membranes of rat liver mitochondria. J Cell Biol. 1968 Jul;38(1):158–175. doi: 10.1083/jcb.38.1.158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Sottocasa G., Sandri G., Panfili E., De Bernard B., Gazzotti P., Vasington F. D., Carafoli E. Isolation of a soluble Ca 2+ binding glycoprotein from ox liver mitochondria. Biochem Biophys Res Commun. 1972 May 26;47(4):808–813. doi: 10.1016/0006-291x(72)90564-5. [DOI] [PubMed] [Google Scholar]
  16. Tzagoloff A., Rubin M. S., Sierra M. F. Biosynthesis of mitochondrial enzymes. Biochim Biophys Acta. 1973 Feb 12;301(1):71–104. doi: 10.1016/0304-4173(73)90013-x. [DOI] [PubMed] [Google Scholar]
  17. Weiss L. The cell periphery. Int Rev Cytol. 1969;26:63–105. doi: 10.1016/s0074-7696(08)61634-4. [DOI] [PubMed] [Google Scholar]
  18. Werner S., Neupert W. Functional and biogenetical heterogeneity of the inner membrane of rat-liver mitochondria. Eur J Biochem. 1972 Feb 15;25(2):379–396. doi: 10.1111/j.1432-1033.1972.tb01707.x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES