Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1975 Jun 1;65(3):603–614. doi: 10.1083/jcb.65.3.603

Pressure-induced depolymerization of spindle microtubules. I. Changes in birefringence and spindle length

PMCID: PMC2109437  PMID: 1133117

Abstract

Changes in birefringence retardation (BR) and length of Chaetopterus meiotic metaphase-arrested spindles produced by increased hydrostatic pressure were observed with polarized-light microscopy using a newly developed optical pressure chamber. Increased pressure produced rapid, reversible decreases in spindle BR and length. Pressures of 3,500 psi or higher at 22 degrees C caused complete disappearance of spindle BR within 3 min. Up to 6,000 psi, the rates of both BR decay and spindle shortening increased progressively with increasing pressure. At 6,000 psi or above, the BR decreased rapidly but there was no evidence of spindle shortening. The general observations are consistent with results of earlier classical experiments on effects of pressure on mitosis, and with experiments that used colchicine or low temperature as microtubule-depolymerizing agents. The kinetics of spindle depolymerization and repolymerization showed two phases: an initial phase of rapid decreases or increase in half-spindle microtubule BR; and a second phase of nearly constant BR during which most of the spindle shortening or growth occurs. BR is assumed to be directly related to the number of microtubules in a spindle cross section. It is hypothesized that microtubules in the spindle have different stabilities depending on the attachment of nonattachment of their ends. This hypothesis is used to explain the two phases of spindle depolymerization and repolymerization as well as several other observations.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allenspach A. L., Roth L. E. Structural variations during mitosis in the chick embryo. J Cell Biol. 1967 Apr;33(1):179–196. doi: 10.1083/jcb.33.1.179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brinkley B. R., Cartwright J., Jr Ultrastructural analysis of mitotic spindle elongation in mammalian cells in vitro. Direct microtubule counts. J Cell Biol. 1971 Aug;50(2):416–431. doi: 10.1083/jcb.50.2.416. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brinkley B. R., Stubblefield E., Hsu T. C. The effects of colcemid inhibition and reversal on the fine structure of the mitotic apparatus of Chinese hamster cells in vitro. J Ultrastruct Res. 1967 Jul;19(1):1–18. doi: 10.1016/s0022-5320(67)80057-1. [DOI] [PubMed] [Google Scholar]
  4. Dietz R. Die Assembly-Hypothese der Chromosomenbewegung und die Veränderungen der Spindellänge während der Anaphase I in Spermatocyten von Pales ferruginea (Tipulidae, Diptera. Chromosoma. 1972;38(1):11–76. doi: 10.1007/BF00319955. [DOI] [PubMed] [Google Scholar]
  5. Gerber B. R., Noguchi H. Volume change associated with the G-F transformation of flagellin. J Mol Biol. 1967 Jun 14;26(2):197–210. doi: 10.1016/0022-2836(67)90291-4. [DOI] [PubMed] [Google Scholar]
  6. Goldman R. D., Rebhun L. I. The structure and some properties of the isolated mitotic apparatus. J Cell Sci. 1969 Jan;4(1):179–209. doi: 10.1242/jcs.4.1.179. [DOI] [PubMed] [Google Scholar]
  7. Inoué S., Sato H. Cell motility by labile association of molecules. The nature of mitotic spindle fibers and their role in chromosome movement. J Gen Physiol. 1967 Jul;50(6 Suppl):259–292. [PMC free article] [PubMed] [Google Scholar]
  8. Josephs R., Harrington W. F. On the stability of myosin filaments. Biochemistry. 1968 Aug;7(8):2834–2847. doi: 10.1021/bi00848a020. [DOI] [PubMed] [Google Scholar]
  9. LaFountain J. R., Jr Birefringence and fine structure of spindles in spermatocytes of Nephrotoma suturalis at metaphase of first meiotic division. J Ultrastruct Res. 1974 Feb;46(2):268–278. doi: 10.1016/s0022-5320(74)80061-4. [DOI] [PubMed] [Google Scholar]
  10. MARSLAND D. PARTIAL REVERSAL OF THE ANTI-MITOTIC EFFECTS OF HEAVY WATER BY HIGH HYDROSTATIC PRESSURE. AN ANALYSIS OF THE FIRST CLEAVAGE DIVISON IN THE EGGS OF STRONGYLOCENTROTUS PURPURATUS. Exp Cell Res. 1965 Jun;38:592–603. doi: 10.1016/0014-4827(65)90383-6. [DOI] [PubMed] [Google Scholar]
  11. MARSLAND D., ZIMMERMAN A. M. STRUCTURAL STABILIZATION OF THE MITOTIC APPARATUS BY HEAVY WATER, IN THE CLEAVING EGGS OF ARBACIA PUNCTULATA; INCREASED RESISTANCE TO PRESSURE-INDUCED DISORGANIZATION. Exp Cell Res. 1965 May;38:306–313. doi: 10.1016/0014-4827(65)90406-4. [DOI] [PubMed] [Google Scholar]
  12. Malawista S. E., Sato H., Bensch K. G. Vinblastine and griseofulvin reversibly disrupt the living mitotic spindle. Science. 1968 May 17;160(3829):770–772. doi: 10.1126/science.160.3829.770. [DOI] [PubMed] [Google Scholar]
  13. Manton I., Kowallik K., Von Stosch H. A. Observations on the fine structure and development of the spindle at mitosis and meiosis in a marine centric diatom (Lithodesmium undulatum). I. Preliminary survey of mitosis in spermatogonia. J Microsc. 1969;89(3):295–320. doi: 10.1111/j.1365-2818.1969.tb00678.x. [DOI] [PubMed] [Google Scholar]
  14. Marsland D., Asterita H. Counteraction of the anti-mitotic effects of D20 in the dividing eggs of Argacia punctulata: a temperature-pressure analysis. Exp Cell Res. 1966 May;42(2):316–327. doi: 10.1016/0014-4827(66)90296-5. [DOI] [PubMed] [Google Scholar]
  15. McIntosh J. R., Landis S. C. The distribution of spindle microtubules during mitosis in cultured human cells. J Cell Biol. 1971 May 1;49(2):468–497. doi: 10.1083/jcb.49.2.468. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Olmsted J. B., Borisy G. G. Microtubules. Annu Rev Biochem. 1973;42:507–540. doi: 10.1146/annurev.bi.42.070173.002451. [DOI] [PubMed] [Google Scholar]
  17. Rebhun L. I., Sander G. Ultrastructure and birefringence of the isolated mitotic apparatus of marine eggs. J Cell Biol. 1967 Sep;34(3):859–883. doi: 10.1083/jcb.34.3.859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. SWANN M. M., MITCHISON J. M. Refinements in polarized light microscopy. J Exp Biol. 1950 Sep;27(2):226–237. doi: 10.1242/jeb.27.2.226. [DOI] [PubMed] [Google Scholar]
  19. Salmon E. D., Ellis G. W. A new miniature hydrostatic pressure chamber for microscopy. Strain-free optical glass windows facilitate phase-contrast and polarized-light microscopy of living cells. Optional fixture permits simultaneous control of pressure and temperature. J Cell Biol. 1975 Jun;65(3):587–602. doi: 10.1083/jcb.65.3.587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Stephens R. E. A thermodynamic analysis of mitotic spindle equilibrium at active metaphase. J Cell Biol. 1973 Apr;57(1):133–147. doi: 10.1083/jcb.57.1.133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Tilney L. G., Gibbins J. R. Microtubules in the formation and development of the primary mesenchyme in Arbacia punctulata. II. An experimental analysis of their role in development and maintenance of cell shape. J Cell Biol. 1969 Apr;41(1):227–250. doi: 10.1083/jcb.41.1.227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Tilney L. G., Hiramoto Y., Marsland D. Studies on the microtubules in heliozoa. 3. A pressure analysis of the role of these structures in the formation and maintenance of the axopodia of Actinosphaerium nucleofilum (Barrett). J Cell Biol. 1966 Apr;29(1):77–95. doi: 10.1083/jcb.29.1.77. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Tilney L. G., Porter K. R. Studies on the microtubules in heliozoa. II. The effect of low temperature on these structures in the formation and maintenance of the axopodia. J Cell Biol. 1967 Jul;34(1):327–343. doi: 10.1083/jcb.34.1.327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. ZIMMERMAN A. M., MARSLAND D. CELL DIVISION: EFFECTS OF PRESSURE ON THE MITOTIC MECHANISMS OF MARINE EGGS (ARBACIA PUNCTULATA). Exp Cell Res. 1964 Jul;35:293–302. doi: 10.1016/0014-4827(64)90096-5. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES