Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1975 Jun 1;65(3):503–512. doi: 10.1083/jcb.65.3.503

Patterns of basal body addition in ciliary rows in Tetrahymena

PMCID: PMC2109439  PMID: 805789

Abstract

Most naked basal bodies visualized in protargol stains on the surface of Tetrahymena are new basal bodies which have not yet developed cilia. The rarity of short cilia is explained by the rapid development of the ciliary shaft once it begins to grow. The high frequency of naked basal bodies (about 50 percent) in log cultures indicates that the interval between assembly of the basal body and the initiation of the cilium is long, approximately a full cell cycle. Naked basal bodies are more frequent in the mid and posterior parts of the cell and two or more naked basal bodies may be associated with one ciliated basal body in these regions. Daughter cells produced at division are apparently asymmetric with respect to their endowment of new and old organelles.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen R. D. The morphogenesis of basal bodies and accessory structures of the cortex of the ciliated protozoan Tetrahymena pyriformis. J Cell Biol. 1969 Mar;40(3):716–733. doi: 10.1083/jcb.40.3.716. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BEISSON J., SONNEBORN T. M. CYTOPLASMIC INHERITANCE OF THE ORGANIZATION OF THE CELL CORTEX IN PARAMECIUM AURELIA. Proc Natl Acad Sci U S A. 1965 Feb;53:275–282. doi: 10.1073/pnas.53.2.275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cole R. M. Symposium on the fine structure and replication of bacteria and their parts. 3. Bacterial cell-wall replication followed by immunofluorescence. Bacteriol Rev. 1965 Sep;29(3):326–344. doi: 10.1128/br.29.3.326-344.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dippell R. V. The development of basal bodies in paramecium. Proc Natl Acad Sci U S A. 1968 Oct;61(2):461–468. doi: 10.1073/pnas.61.2.461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. EHRET C., SAVAGE N., ALBLINGER J. PATTERNS OF SEGREGATION OF STRUCTURAL ELEMENTS DURING CELL DIVISION. Z Zellforsch Mikrosk Anat. 1964 Sep 17;64:129–139. doi: 10.1007/BF00339192. [DOI] [PubMed] [Google Scholar]
  6. FRANKEL J. THE EFFECTS OF HIGH TEMPERATURES ON THE PATTERN OF ORAL DEVELOPMENT IN TETRAHYMENA PYRIFORMIS GL. J Exp Zool. 1964 Apr;155:403–435. doi: 10.1002/jez.1401550311. [DOI] [PubMed] [Google Scholar]
  7. Flavell R. A., Jones I. G. DNA from isolated pellicles of Tetrahymena. J Cell Sci. 1971 Nov;9(3):719–726. doi: 10.1242/jcs.9.3.719. [DOI] [PubMed] [Google Scholar]
  8. Frankel J. Positional information in unicellular organisms. J Theor Biol. 1974 Oct;47(2):439–481. doi: 10.1016/0022-5193(74)90209-4. [DOI] [PubMed] [Google Scholar]
  9. Gillham N. W. Genetic analysis of the chloroplast and mitochondrial genomes. Annu Rev Genet. 1974;8:347–391. doi: 10.1146/annurev.ge.08.120174.002023. [DOI] [PubMed] [Google Scholar]
  10. Grimes G. W. Morphological discontinuity of kinetosomes during the life cycle of Oxytricha fallax. J Cell Biol. 1973 Apr;57(1):229–232. doi: 10.1083/jcb.57.1.229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Grimes G. W. Origin and development of kinetosomes in Oxytricha fallax. J Cell Sci. 1973 Jul;13(1):43–53. doi: 10.1242/jcs.13.1.43. [DOI] [PubMed] [Google Scholar]
  12. Jerka-Dziadosz M., Frankel J. An analysis of the formation of ciliary primordia in the hypotrich ciliate Urostyla weissei. J Protozool. 1969 Nov;16(4):612–637. doi: 10.1111/j.1550-7408.1969.tb02321.x. [DOI] [PubMed] [Google Scholar]
  13. Perlman B. S. Basal body addition in ciliary rows of Tetrahymena pyriformis. J Exp Zool. 1973 Jun;184(3):365–368. doi: 10.1002/jez.1401840310. [DOI] [PubMed] [Google Scholar]
  14. Rattner J. B., Phillips S. G. Independence of centriole formation and DNA synthesis. J Cell Biol. 1973 May;57(2):359–372. doi: 10.1083/jcb.57.2.359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. SONNEBORN T. M. The kinetosome in cytoplasmic heredity; a visible, normal, cytoplasmic genetic particle with a future. J Hered. 1950 Aug;41(8):222–224. doi: 10.1093/oxfordjournals.jhered.a106135. [DOI] [PubMed] [Google Scholar]
  16. WILLIAMS N. E., SCHERBAUM O. H. Morphogenetic events in normal and synchronously dividing Tetrahymena. J Embryol Exp Morphol. 1959 Jun;7:241–256. [PubMed] [Google Scholar]
  17. Williams N. E., Michelsen O., Zeuthen E. Synthesis of cortical proteins in Tetrahymena. J Cell Sci. 1969 Jul;5(1):143–162. doi: 10.1242/jcs.5.1.143. [DOI] [PubMed] [Google Scholar]
  18. Witman G. B., Carlson K., Berliner J., Rosenbaum J. L. Chlamydomonas flagella. I. Isolation and electrophoretic analysis of microtubules, matrix, membranes, and mastigonemes. J Cell Biol. 1972 Sep;54(3):507–539. doi: 10.1083/jcb.54.3.507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Younger K. B., Banerjee S., Kelleher J. K., Winston M., Margulis L. Evidence that the synchronized production of new basal bodies is not associated with DNA synthesis in Stentor coeruleus. J Cell Sci. 1972 Sep;11(2):621–637. doi: 10.1242/jcs.11.2.621. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES