Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1975 Jan 1;64(1):54–74. doi: 10.1083/jcb.64.1.54

Electron probe analysis of calcium transport by small intestine

PMCID: PMC2109482  PMID: 1109237

Abstract

Calcium transport in small intestine of rat and chick has been studied at the cellular level using the electron probe X-ray microanalyzer. Tissues were examined directly after removal as well as after incubation in a calcium solution. In both preparations, discrete calcium localizations were found associated with intracellular and extracellular goblet cell mucus. The in vitro preparations showed calcium in transit across the absorptive epithelium in discrete localizations. Although the primary path of transport was along lateral cell borders, some localizations were found in the cytoplasm in a supranuclear position. The effect of vitamin D depletion and repletion was to decrease and increase, respectively, the number of calcium localizations in transit across the epithelium. These results suggest that calcium is transported while in a sequestered form and indicate that goblet cell mucus plays a role in this transport process.

Full Text

The Full Text of this article is available as a PDF (7.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams T. H., Norman A. W. Studies on the mechanism of action of calciferol. I. Basic parameters of vitamin D-mediated calcium transport. J Biol Chem. 1970 Sep 10;245(17):4421–4431. [PubMed] [Google Scholar]
  2. BATLAN L. E. Calcification within the stomach wall in gastric malignancy; case report and review of literature. Am J Roentgenol Radium Ther Nucl Med. 1954 Nov;72(5):788–794. [PubMed] [Google Scholar]
  3. Borle A. B. Membrane transfer of calcium. Clin Orthop Relat Res. 1967 May-Jun;52:267–291. doi: 10.1097/00003086-196700520-00022. [DOI] [PubMed] [Google Scholar]
  4. Bounous G., McArdle A. H., Hodges D. M., Hampson L. G., Gurd F. N. Biosynthesis of intestinal mucin in shock: relationship to tryptic hemorrhagic enteritis and permeability to curare. Ann Surg. 1966 Jul;164(1):13–22. doi: 10.1097/00000658-196607000-00002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. COSTANTIN L. L., FRANZINI-ARMSTRONG C., PODOLSKY R. J. LOCALIZATION OF CALCIUM-ACCUMULATING STRUCTURES IN STRIATED MUSCLE FIBERS. Science. 1965 Jan 8;147(3654):158–160. doi: 10.1126/science.147.3654.158. [DOI] [PubMed] [Google Scholar]
  6. Cardell R. R., Jr, Badenhausen S., Porter K. R. Intestinal triglyceride absorption in the rat. An electron microscopical study. J Cell Biol. 1967 Jul;34(1):123–155. doi: 10.1083/jcb.34.1.123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Coleman J. R., DeWitt S. M., Batt P., Terepka A. R. Electron probe analysis of calcium distribution during active transport in chick chorioallantoic membrane. Exp Cell Res. 1970 Nov;63(1):216–220. doi: 10.1016/0014-4827(70)90356-3. [DOI] [PubMed] [Google Scholar]
  8. Coleman J. R., Terepka A. R. Electron probe analysis of the calcium distribution in cells of the embryonic chick chorioallantoic membrane. I. A critical evaluation of techniques. J Histochem Cytochem. 1972 Jun;20(6):401–413. doi: 10.1177/20.6.401. [DOI] [PubMed] [Google Scholar]
  9. Coleman J. R., Terepka A. R. Electron probe analysis of the calcium distribution in cells of the embryonic chick chorioallantoic membrane. II. Demonstration of intracellular location during active transcellular transport. J Histochem Cytochem. 1972 Jun;20(6):414–424. doi: 10.1177/20.6.414. [DOI] [PubMed] [Google Scholar]
  10. Cornell R., Walker W. A., Isselbacher K. J. Small intestinal absorption of horseradish peroxidase. A cytochemical study. Lab Invest. 1971 Jul;25(1):42–48. [PubMed] [Google Scholar]
  11. D'Altorio R. A. Calcification in a gastric mucinous adenocarcinoma. Am J Dig Dis. 1973 May;18(5):419–492. doi: 10.1007/BF01071993. [DOI] [PubMed] [Google Scholar]
  12. DE LUCA H. F., GUROFF G., STEENBOCK H., REISER S., MANNATT M. R. Effect of various vitamin deficiencies on citric acid metabolism in the rat. J Nutr. 1961 Oct;75:175–180. doi: 10.1093/jn/75.2.175. [DOI] [PubMed] [Google Scholar]
  13. FLOREY H. W. The secretion and function of intestinal mucus. Gastroenterology. 1962 Sep;43:326–329. [PubMed] [Google Scholar]
  14. Forstner G. G. Surface sugar in the intestine. Am J Med Sci. 1969 Sep;258(3):172–180. doi: 10.1097/00000441-196909000-00004. [DOI] [PubMed] [Google Scholar]
  15. Friedman H. I., Cardell R. R., Jr Effects of puromycin on the structure of rat intestinal epithelial cells during fat absorption. J Cell Biol. 1972 Jan;52(1):15–40. doi: 10.1083/jcb.52.1.15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kimmich G. A., Rasmussen H. Regulation of pyruvate carboxylase activity by calcium in intact rat liver mitochondria. J Biol Chem. 1969 Jan 10;244(1):190–199. [PubMed] [Google Scholar]
  17. Lev R., Orlic D. Protein absorption by the intestine of the fetal rat in utero. Science. 1972 Aug 11;177(4048):522–524. doi: 10.1126/science.177.4048.522. [DOI] [PubMed] [Google Scholar]
  18. MARCUS C. S., LENGEMANN F. W. Absorption of Ca45 and Sr85 from solid and liquid food at various levels of the alimentary tract of the rat. J Nutr. 1962 Jun;77:155–160. doi: 10.1093/jn/77.2.155. [DOI] [PubMed] [Google Scholar]
  19. Martin D. L., Deluca H. F. Calcium transport and the role of vitamin D. Arch Biochem Biophys. 1969 Oct;134(1):139–148. doi: 10.1016/0003-9861(69)90260-4. [DOI] [PubMed] [Google Scholar]
  20. Podolsky R. J., Hall T., Hatchett S. L. Identification of oxalate precipitates in striated muscle fibers. J Cell Biol. 1970 Mar;44(3):699–702. doi: 10.1083/jcb.44.3.699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. SCHACHTER D., DOWDLE E. B., SCHENKER H. Active transport of calcium by the small intestine of the rat. Am J Physiol. 1960 Feb;198:263–268. doi: 10.1152/ajplegacy.1960.198.2.263. [DOI] [PubMed] [Google Scholar]
  22. Sampson H. W., Matthews J. L., Martin J. H., Kunin A. S. An electron microscopic localization of calcium in the small intestine of normal, rachitic, and vitamin-D-treated rats. Calcif Tissue Res. 1970;5(4):305–316. doi: 10.1007/BF02017560. [DOI] [PubMed] [Google Scholar]
  23. Schrager J. The chemical composition and function of gastrointestinal mucus. Gut. 1970 May;11(5):450–456. doi: 10.1136/gut.11.5.450. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Shockman A. T. Calcification in adenocarcinoma. Am J Gastroenterol. 1973 Aug;60(2):178–184. [PubMed] [Google Scholar]
  25. Taylor A. N., Wasserman R. H. Correlations between the vitamin D-induced calcium binding protein and intestinal absorption of calcium. Fed Proc. 1969 Nov-Dec;28(6):1834–1838. [PubMed] [Google Scholar]
  26. Taylor A. N., Wasserman R. H. Immunofluorescent localization of vitamin D-dependent calcium-binding protein. J Histochem Cytochem. 1970 Feb;18(2):107–115. doi: 10.1177/18.2.107. [DOI] [PubMed] [Google Scholar]
  27. Taylor A. N., Wasserman R. H. Vitamin D3-induced calcium-binding protein: partial purification, electrophoretic visualization, and tissue distribution. Arch Biochem Biophys. 1967 Mar;119(1):536–540. doi: 10.1016/0003-9861(67)90488-2. [DOI] [PubMed] [Google Scholar]
  28. Wasserman R. H., Taylor A. N. Vitamin D-dependent calcium-binding protein. Response to some physiological and nutritional variables. J Biol Chem. 1968 Jul 25;243(14):3987–3993. [PubMed] [Google Scholar]
  29. Weisberg H., Rhodin J., Glass G. B. Intestinal vitamin B12 absorption in the dog. 3. Demonstration of the intracellular pathway of absorption by light and electron microscope autoradiography. Lab Invest. 1968 Nov;19(5):516–525. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES