Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1975 Feb 1;64(2):497–503. doi: 10.1083/jcb.64.2.497

Evidence for firm linkages between microtubules and membrane-bounded vesicles

PMCID: PMC2109492  PMID: 1117032

Abstract

Direct evidence is presented in support of the widely held idea that membrane-bounded vesicles can bind firmly to microtubules. This is shown in P. caudatum which contains ribbons of straight microtubules located in open cytoplasm and uniquely associated with the disk-shaped vesicles. These vesicles frequently lie flat against the face of the ribbons at a constant distance of 30-40 nm. Under certain conditions the ribbons are compressed into zigzag pattern, but the vesicles continue to maintain their 30-40 nm spacing with the tubules and The author's interpretation of this phenomena is that the vesicles and the microtubules are strongly bound together. This interaction appears to be via a filamentous material rather than bridges.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen R. D. Fine structure of membranous and microfibrillar systems in the cortex of Paramecium caudatum. J Cell Biol. 1971 Apr;49(1):1–20. doi: 10.1083/jcb.49.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Allen R. D. Food vacuole membrane growth with microtubule-associated membrane transport in Paramecium. J Cell Biol. 1974 Dec;63(3):904–922. doi: 10.1083/jcb.63.3.904. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Allen R. D., Wolf R. W. The cytoproct of Paramecium caudatum: structure and function, microtubules, and fate of food vacuole membranes. J Cell Sci. 1974 May;14(3):611–631. doi: 10.1242/jcs.14.3.611. [DOI] [PubMed] [Google Scholar]
  4. Bardele C. F. A microtubule model for ingestion and transport in the suctorian tentacle. Z Zellforsch Mikrosk Anat. 1972;126(1):116–134. doi: 10.1007/BF00306784. [DOI] [PubMed] [Google Scholar]
  5. Burton P. R., Fernandez H. L. Delineation by lanthanum staining of filamentous elements associated with the surfaces of axonal microtubules. J Cell Sci. 1973 Mar;12(2):567–583. doi: 10.1242/jcs.12.2.567. [DOI] [PubMed] [Google Scholar]
  6. Dales S., Chardonnet Y. Early events in the interaction of adenoviruses with HeLa cells. IV. Association with microtubules and the nuclear pore complex during vectorial movement of the inoculum. Virology. 1973 Dec;56(2):465–483. doi: 10.1016/0042-6822(73)90050-0. [DOI] [PubMed] [Google Scholar]
  7. Fernandez H. L., Burton P. R., Samson F. E. Axoplasmic transport in the crayfish nerve cord. The role of fibrillar constituents of neurons. J Cell Biol. 1971 Oct;51(1):176–192. doi: 10.1083/jcb.51.1.176. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Flament-Durand J., Distin P. Studies on the transport of secretory granules in the magnocellular hypothalamic neurons. I. Action of colchicine on axonal flow and neurotubules in the paraventricular nuclei. Z Zellforsch Mikrosk Anat. 1972;130(4):440–454. doi: 10.1007/BF00306998. [DOI] [PubMed] [Google Scholar]
  9. Franke W. W. Cytoplasmic microtubules linked to endoplasmic reticulum with cross-bridges. Exp Cell Res. 1971 Jun;66(2):486–489. doi: 10.1016/0014-4827(71)90705-1. [DOI] [PubMed] [Google Scholar]
  10. Freed J. J., Lebowitz M. M. The association of a class of saltatory movements with microtubules in cultured cells. J Cell Biol. 1970 May;45(2):334–354. doi: 10.1083/jcb.45.2.334. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Green L. MECHANISM OF MOVEMENTS OF GRANULES IN MELANOCYTES OF Fundulus heteroclitus. Proc Natl Acad Sci U S A. 1968 Apr;59(4):1179–1186. doi: 10.1073/pnas.59.4.1179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hinkley R. E., Jr Axonal microtubules and associated filaments stained by Alcian blue. J Cell Sci. 1973 Nov;13(3):753–761. doi: 10.1242/jcs.13.3.753. [DOI] [PubMed] [Google Scholar]
  13. Hökfelt T., Dahlström A. Effects of two mitosis inhibitors (colchicine and vinblastine) on the distribution and axonal transport of noradrenaline storage particles, studied by fluorescence and electron microscopy. Z Zellforsch Mikrosk Anat. 1971;119(4):460–482. doi: 10.1007/BF00455243. [DOI] [PubMed] [Google Scholar]
  14. Karlsson J. O., Hansson H. A., Sjöstrand J. Effect of colchicine on axonal transport and morphology of retinal ganglion cells. Z Zellforsch Mikrosk Anat. 1971;115(2):265–283. doi: 10.1007/BF00391128. [DOI] [PubMed] [Google Scholar]
  15. Messier P. E., Auclair C. Inhibition of nuclear migration in the absence of microtubules in the chick embryo. J Embryol Exp Morphol. 1973 Dec;30(3):661–671. [PubMed] [Google Scholar]
  16. Moellmann G., McGuire J., Lerner A. B. Ultrastructure and cell biology of pigment cells. Intracellular dynamics and the fine structure of melanocytes with special reference to the effects of MSH and cyclic AMP on microtubules and 10-nm filaments. Yale J Biol Med. 1973 Dec;46(5):337–360. [PMC free article] [PubMed] [Google Scholar]
  17. Ochs S. Fast transport of materials in mammalian nerve fibers. Science. 1972 Apr 21;176(4032):252–260. doi: 10.1126/science.176.4032.252. [DOI] [PubMed] [Google Scholar]
  18. Robison W. G., Jr, Charlton J. S. Microtubules, microfilaments, and pigment movement in the chromatophores of Palaemonetes vulgaris (Crustacea). J Exp Zool. 1973 Dec;186(3):279–304. doi: 10.1002/jez.1401860307. [DOI] [PubMed] [Google Scholar]
  19. Roth L. E., Pihlaja D. J., Shigenaka Y. Microtubules in the heliozoan axopodium. I. The gradion hypothesis of allosterism in structural proteins. J Ultrastruct Res. 1970 Jan;30(1):7–37. doi: 10.1016/s0022-5320(70)90062-6. [DOI] [PubMed] [Google Scholar]
  20. Rudzinska M. A. The fine structure and function of the tentacle in Tokophrya infusionum. J Cell Biol. 1965 Jun;25(3):459–477. doi: 10.1083/jcb.25.3.459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Smith D. S., Järlfors U., Beránek R. The organization of synaptic axcplasm in the lamprey (petromyzon marinus) central nervous system. J Cell Biol. 1970 Aug;46(2):199–219. doi: 10.1083/jcb.46.2.199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Smith D. S. On the significance of cross-bridges between microtubules and synaptic vesicles. Philos Trans R Soc Lond B Biol Sci. 1971 Jun 17;261(839):395–405. doi: 10.1098/rstb.1971.0074. [DOI] [PubMed] [Google Scholar]
  23. Tilney L. G., Porter K. R. Studies on microtubules in Heliozoa. I. The fine structure of Actinosphaerium nucleofilum (Barrett), with particular reference to the axial rod structure. Protoplasma. 1965;60(4):317–344. doi: 10.1007/BF01247886. [DOI] [PubMed] [Google Scholar]
  24. Wikswo M. A., Novales R. R. Effect of colchicine on microtubules in the melanophores of Fundulus heteroclitus. J Ultrastruct Res. 1972 Nov;41(3):189–201. doi: 10.1016/s0022-5320(72)90063-9. [DOI] [PubMed] [Google Scholar]
  25. Wikswo M. A., Novales R. R. The effect of colchicine on migration of pigment granules in the melanophores of Fundulus heteroclitus. Biol Bull. 1969 Aug;137(1):228–237. doi: 10.2307/1539945. [DOI] [PubMed] [Google Scholar]
  26. Wisniewski H., Shelanski M. L., Terry R. D. Effects of mitotic spindle inhibitors on neurotubules and neurofilaments in anterior horn cells. J Cell Biol. 1968 Jul;38(1):224–229. doi: 10.1083/jcb.38.1.224. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES